A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

pH-responsive magnetic biocompatible chitosan-based nanocomposite carrier for ciprofloxacin release. | LitMetric

The pH-sensitive and magnetic-triggered release ensures the effective delivery of drugs. Chitosan carries amine pendants that encourage the fabrication of pH-responsive carriers. Montmorillonite (MMt), an attractive nano-clay in drug delivery possessing high encapsulation properties, was magnetized through the co-precipitation of Fe/Fe ions. The study aimed to integrate the magnetic montmorillonite (mMMt) into the chitosan matrix and crosslinked by citric acid (CA) to achieve the nanocomposite carrier with double-responsive features for effective drug delivery. The release evaluation revealed that coating the mMMt with CA-crosslinked chitosan prevented the burst release of Ciprofluxcacin (Cip). The nanocomposite showed a high sustained release, and the release rate in the neutral environment (pH 7.4) was remarkably higher than in acidic media (pH 5.8). The new nanocomposite carrier showed high encapsulation efficiency to Cip (about 98 %). The study was developed by investigating external magnetic effects on the release rate, which lead to an increase in the release rate. The kinetics studies confirmed the diffusion mechanism for Cip release in all experimental media. The Cip-loaded nanocomposite carriers showed antibacterial activity against E. coli and S. aureus.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.126228DOI Listing

Publication Analysis

Top Keywords

nanocomposite carrier
12
release rate
12
release
9
drug delivery
8
high encapsulation
8
nanocomposite
5
ph-responsive magnetic
4
magnetic biocompatible
4
biocompatible chitosan-based
4
chitosan-based nanocomposite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!