Mimicking 3D breast tumor-stromal interactions to screen novel cancer therapeutics.

Eur J Pharm Sci

i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto 4200-135, Portugal. Electronic address:

Published: November 2023

Most of the 3D breast tumor models used in drug screening studies only comprise tumor cells, keeping out other essential cell players of the tumor microenvironment. Tumor-associated macrophages and fibroblasts are frequently correlated with tumor progression and therapy resistance, and targeting these cells at the tumor site has been appointed as a promising therapeutic strategy. However, the translation of new therapies to the clinic has been hampered by the absence of cellular models that more closely mimic the features of in vivo breast tumor microenvironment. Therefore, the development of innovative 3D models able to provide consistent and predictive responses about the in vivo efficacy of novel therapeutics is still an unmet preclinical need. Herein, we have established an in vitro 3D heterotypic spheroid model including MCF-7 breast tumor cells, human mammary fibroblasts and human macrophages. To establish this model, different cell densities have been combined and characterized through the evaluation of the spheroid size and metabolic activity, as well as histological and immunohistochemistry analysis of the 3D multicellular structures. The final optimized 3D model consisted in a multicellular spheroid seeded at the initial density of 5000 cells and cell ratio of 1:2:1 (MCF-7:monocytes:fibroblasts). Our model recapitulates several features of the breast tumor microenvironment, including the formation of a necrotic core, spatial organization, and extracellular matrix production. Further, it was validated as a platform for drug screening studies, using paclitaxel, a currently approved drug for breast cancer treatment, and Gefitinib, a chemotherapeutic approved for lung cancer and in preclinical evaluation for breast cancer. Generally, the impact on the cell viability of the 3D model was less evident than in 2D model, reinforcing the relevance of such complex 3D models in addressing novel treatment approaches. Overall, the use of a 3D heterotypic spheroid of breast cancer could be a valuable tool to predict the therapeutic effect of new treatments for breast cancer patients, by recapitulating key features of the breast cancer microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2023.106560DOI Listing

Publication Analysis

Top Keywords

breast cancer
20
breast tumor
16
tumor microenvironment
12
breast
9
tumor
8
drug screening
8
screening studies
8
tumor cells
8
heterotypic spheroid
8
features breast
8

Similar Publications

This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.

View Article and Find Full Text PDF

Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.

View Article and Find Full Text PDF

Metaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.

View Article and Find Full Text PDF

the evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.

View Article and Find Full Text PDF

the axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!