The hippocampus is a complex brain structure composed of subfields that each have distinct cellular organizations. While the volume of hippocampal subfields displays age-related changes that have been associated with inference and memory functions, the degree to which the cellular organization within each subfield is related to these functions throughout development is not well understood. We employed an explicit model testing approach to characterize the development of tissue microstructure and its relationship to performance on 2 inference tasks, one that required memory (memory-based inference) and one that required only perceptually available information (perception-based inference). We found that each subfield had a unique relationship with age in terms of its cellular organization. While the subiculum (SUB) displayed a linear relationship with age, the dentate gyrus (DG), cornu ammonis field 1 (CA1), and cornu ammonis subfields 2 and 3 (combined; CA2/3) displayed nonlinear trajectories that interacted with sex in CA2/3. We found that the DG was related to memory-based inference performance and that the SUB was related to perception-based inference; neither relationship interacted with age. Results are consistent with the idea that cellular organization within hippocampal subfields might undergo distinct developmental trajectories that support inference and memory performance throughout development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10502573PMC
http://dx.doi.org/10.1093/cercor/bhad276DOI Listing

Publication Analysis

Top Keywords

cellular organization
12
inference
8
hippocampal subfields
8
inference memory
8
memory-based inference
8
perception-based inference
8
relationship age
8
cornu ammonis
8
development
4
development human
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!