A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes. | LitMetric

Machine learning algorithms to predict major adverse cardiovascular events in patients with diabetes.

Comput Biol Med

Economic, Social and Administrative Pharmacy (ESAP), College of Pharmacy and Pharmaceutical Sciences, Institute of Public Heath, Florida A&M University, Tallahassee, FL, 32307, USA. Electronic address:

Published: September 2023

Background: Major Adverse Cardiovascular Events (MACE) are common complications of type 2 diabetes mellitus (T2DM) that include myocardial infarction (MI), stroke, and heart failure (HF). The objective of the current study was to predict MACE among T2DM patients.

Methods: Type 2 diabetes mellitus patients above 18 years old were recruited for the study from the All of Us Research Program. Eligible participants were those who took sodium-glucose cotransporter 2 inhibitors. Different Machine learning algorithms: including RandomForest (RF), XGBoost, logistic regression (LR), and weighted ensemble model (WEM) were employed. Clinical attributes, electrolytes and biomarkers were explored in predicting MACE. The feature importance was determined using mean decrease accuracy.

Results: Overall, 9, 059 subjects were included in the analyses, of which 5197 (57.4%) were females. The XGBoost Model demonstrated a prediction accuracy of 0.80 [0.78-0.82], which is higher as compared to the RF 0.78[0.76-0.80], the LR model 0.65 [0.62-0.67], and the WEM 0.75 [0.73-0.76], respectively. The classification accuracy of the models for stroke was more than 95%, which was higher than prediction accuracy for MI (∼85%), and HF (∼80%). Phosphate, blood urea nitrogen and troponin levels were the major predictors of MACE.

Conclusion: The ML models had shown acceptable performance in predicting MACE in T2DM patients, except the LR model. Phosphate, blood urea nitrogen, and other electrolytes were important predictors of MACE, which is consistent between the individual components of MACE, such as stroke, MI, and HF. These parameters can be calibrated as prognostic parameters of MACE events in T2DM patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.107289DOI Listing

Publication Analysis

Top Keywords

machine learning
8
learning algorithms
8
major adverse
8
adverse cardiovascular
8
cardiovascular events
8
type diabetes
8
diabetes mellitus
8
mace t2dm
8
predicting mace
8
prediction accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!