Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Conventional implants tend to have significant limitations, as they are one-size-fits-all, require monitoring, and have the potential for immune rejection. However, 4D Printing presents a method to manufacture highly personalized, shape-changing, minimally invasive biomedical implants. Shape memory polymers (SMPs) with a glass transition temperature (T) between room and body temperature (20-38 °C) are particularly desirable for this purpose, as they can be deformed to a temporary shape before implantation, then undergo a shape change within the body. Commonly used SMPs possess either an undesirable T or lack the biocompatibility or mechanical properties necessary to match soft biological tissues. In this work, Poly(glycerol dodecanoate) acrylate (PGDA) with engineered pores is introduced to solve these issues. Pores are induced by porogen leaching, where microparticles are mixed with the printing ink and then are dissolved in water after 3D printing, creating a hierarchically porous texture to improve biological activity. With this method, highly complex shapes were printed, including overhanging structures, tilted structures, and a "3DBenchy". The porous SMP has a T of 35.6 °C and a Young's Modulus between 0.31 and 1.22 MPa, comparable to soft tissues. A one-way shape memory effect (SME) with shape fixity and recovery ratios exceeding 98 % was also demonstrated. Cultured cells had a survival rate exceeding 90 %, demonstrating cytocompatibility. This novel method creates hierarchically porous shape memory scaffolds with an optimal T for reducing the invasiveness of implantation and allows for precise control over elastic modulus, porosity, structure, and transition temperature.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529366 | PMC |
http://dx.doi.org/10.1016/j.bioadv.2023.213575 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!