Exposure of a conducting porous material to an electric field in electrolytes induces an electric dipole, which results in capacitive charging of cations and anions at opposite poles. In this letter, we investigate a novel desalination method using this induced-charge capacitive deionization (ICCDI). To do this, we devise a microscale ICCDI platform that can visualize in situ ion concentrations, pH shifts, and fluid flows, and study ion transport dynamics and desalination performances compared to conventional CDI with unipolar / bipolar connections. Similar ion concentration and fluid flow characteristics were observed in Ohmic, limiting, and over-limiting regimes, but variations in desalination performance trends were noted based on the number of stacks. In a single cell, ICCDI generates a higher electric field at the opposite poles of porous electrodes than simple conducted electrodes in CDIs with unipolar/bipolar connections, leading to superior salt removal and/or lower ionic current at a given applied voltage. This marks a clear contrast from CDI with bipolar connection, which lacks any advantage over CDI with unipolar connection in a single cell. These metrics of ICCDI however deteriorated as the stack number increased, likely due to short-circuiting between the dipoles. As a result, ICCDI in current form shows higher desalination efficient than conventional CDIs with low stack numbers (< 6), so we offer the scale-up module by repeating 4-stack ICCDI units. Our study enhances comprehension of ion transport dynamics and desalination performance in ICCDI, and the results could aid in the development of ICCDI for energy/cost-efficient desalination.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120436 | DOI Listing |
ChemSusChem
January 2025
Kashi University, Water Resources and Water Environment Engineering Technology Center, Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences;Xinjiang Key Laboratory of Engineering Materials and Structural Safety,School of Civil Engineering, CHINA.
Capacitive deionization (CDI) is a novel, cost-effective and environmentally friendly desalination technology that has garnered significant attention in recent years. Carbon materials, owing to their excellent properties, have become the preferred electrode materials for CDI. Given the significant differences between different ions, ion-selective performance has emerged as a critical aspect of CDI applications.
View Article and Find Full Text PDFMembranes (Basel)
January 2025
Department of Green Chemical Engineering, College of Engineering, Sangmyung University, Cheonan 31066, Republic of Korea.
Membrane capacitive deionization (MCDI) is an electrochemical ion separation process that combines ion-exchange membranes (IEMs) with porous carbon electrodes to enhance desalination efficiency and address the limitations of conventional capacitive deionization (CDI). In this study, a cation-exchange membrane (CEM) embedded with a metal-organic framework (MOF) was developed to effectively separate monovalent and multivalent cations in influent solutions via MCDI. To fabricate CEMs with high monovalent ion selectivity, ZIF-8 was incorporated into sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) at various weight ratios.
View Article and Find Full Text PDFACS Environ Au
January 2025
Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, P. R. China.
Rational exploration of cost-effective, durable, and high-performance electrode materials is imperative for advancing the progress of capacitive deionization (CDI). The integration of multicomponent layered double hydroxides (LDHs) with conjugated conductive metal-organic frameworks (c-MOFs) to fabricate bifunctional heterostructure electrode materials is considered a complex but promising strategy. Herein, the fabrication of elaborately designed three-dimensional hierarchical conductive MOF/LDH/CF nanoarchitectures (M-CAT/LDH/CF) as CDI anodes via a controllable grafted-growth strategy is reported.
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China; College of Environment and Resources, Xiangtan University, Xiangtan, Hunan 411105, PR China. Electronic address:
A sustainable supply of lithium from salt-lake brines is necessary due to the surge in demand of the lithium-battery market. However, the presence of coexisting ions, particularly Na, poses a significant challenge due to the similarities in charge, electronic structure, and hydrated size. The electrochemical system with manganese (Mn)-based lithium-ion (Li) sieves electrodes is a promising method for Li recovery, but often suffers from geometric configuration distortion, which reduces their selectivity and capacity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!