Background: Diabetes mellitus is a chronic progressive metabolic disorder that affects millions of people worldwide. Emerging evidence suggests the important roles of sphingolipid metabolism in diabetes. In particular, sphingosine-1-phosphate (S1P) and S1P receptor 2 (S1PR2) have important metabolic functions and are involved in several metabolic diseases. In diabetes, S1PR2 can effectively preserve β cells and improve glucose/insulin tolerance in high-fat diet induced and streptozotocin (STZ)-induced diabetic mouse models. We previously developed a group of potent and selective S1PR2 ligands and radioligands.

Methods: In this study, we continued our efforts and characterized our leading S1PR2 radioligand, [C]TZ34125, in a STZ-induced diabetic mouse model. [C]TZ34125 was radiosynthesized in an automated synthesis module and in vitro saturation binding assay was performed using recombinant human S1PR2 membrane. In vitro saturation autoradiography analysis was also performed to determine the binding affinity of [C]TZ34125 against mouse tissues. Type-1 diabetic mouse model was developed following a single high dose of STZ in C57BL/6 mice. Ex vivo biodistribution was performed to evaluate the distribution and amount of [C]TZ34125 in tissues. In vitro autoradiography analysis was performed to compare the uptake of [C]TZ34125 between diabetic and control animals in mouse spleen and pancreas.

Results: Our in vitro saturation binding assay using [C]TZ34125 confirmed [C]TZ34125 is a potent radioligand to recombinant human S1PR2 membrane with a K value of 0.9 nM. Saturation autoradiographic analysis showed [C]TZ34125 has a K of 67.5, 45.9, and 25.0 nM to mouse kidney, spleen, and liver tissues respectively. Biodistribution study in STZ-induced diabetic mice showed the uptake of [C]TZ34125 was significantly elevated in the spleen (~2 fold higher) and pancreas (~1.4 fold higher) compared to normal controls. The increased uptake of [C]TZ34125 was further confirmed using autoradiographic analysis in the spleen and pancreases of STZ-induced diabetic mice, indicating S1PR2 can potentially act as a biomarker of diabetes in pancreases and inflammation in spleen. Future mechanistic analysis and in vivo quantitative assessment using non-invasive PET imaging in large animal model of diabetes is worthwhile.

Conclusions: Overall, our data showed an increased uptake of our lead S1PR2-specific radioligand, [C]TZ34125, in the spleen and pancreases of STZ-induced diabetic mice, and demonstrated [C]TZ34125 has a great potential for preclinical and clinical usage for assessment of S1PR2 in diabetes and inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10949307PMC
http://dx.doi.org/10.1016/j.nucmedbio.2023.108370DOI Listing

Publication Analysis

Top Keywords

stz-induced diabetic
20
diabetic mouse
12
[c]tz34125
12
vitro saturation
12
uptake [c]tz34125
12
diabetic mice
12
diabetic
8
s1pr2
8
radioligand [c]tz34125
8
mouse model
8

Similar Publications

Background: Diabetes mellitus (DM) poses a major risk to human health due to an array of implications, one of which is a detrimental effect on the testicular and reproductive functions. Euphorbia heterophylla is widely recognized for its medicinal properties worldwide.

Methods And Findings: The objective of this study was to profile E.

View Article and Find Full Text PDF

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent hepatic disorder worldwide. Arachidonic acid 15-lipoxygenase (ALOX15), an enzyme catalyzing the peroxidation of polyunsaturated fatty acids, plays a crucial role in various diseases. Here, we sought to investigate the involvement of ALOX15 in MASLD.

View Article and Find Full Text PDF

Role of antioxidative stress activity of Fucoxanthin nanoparticle as hepatoprotective in diabetic rats.

Pak J Pharm Sci

January 2025

Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.

This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.

View Article and Find Full Text PDF

Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!