Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The incorporation of artificial intelligence into radiological clinical workflow is on the verge of being realized. To ensure that these tools are effective, measures must be taken to educate radiologists on tool performance and failure modes. Additionally, radiology systems should be designed to avoid automation bias and the potential decline in radiologist performance. Designed solutions should cater to every level of expertise so that patient care can be enhanced and risks reduced. Ultimately, the radiology community must provide education so that radiologists can learn about algorithms, their inputs and outputs, and potential ways they may fail. This manuscript will present suggestions on how to train radiologists to use these new digital systems, how to detect AI errors, and how to maintain underlying diagnostic competency when the algorithm fails.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10584741 | PMC |
http://dx.doi.org/10.1007/s10278-023-00892-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!