Background: The presence of neural precursor stem cells (NPSCs) in some parts of the adult brain and the potency of these types of cells with a therapeutic viewpoint, has opened up a new approach for the treatment and recovery of the defects of central nervous system (CNS). Quercetin, as an herbal flavonoid, has been extensively investigated and shown to have numerous restoratives, inhibitory, and protective effects on some cell-lines and disorders. The purpose of this study is to simultaneously investigate the effect of quercetin on the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) gene and the effect on the proliferation and differentiation of NPSCs derived from the subventricular zone (SVZ) of the brain of adult rats.

Methods And Results: The cell obtained from SVZ cultured for one week and treated with quercetin at the concentrations of 1, 5, and 15 μM to evaluate the Nrf2 expression, proliferation and differentiation of NSCs after one week. Cellular and genetic results was performed by RT-PCR, MTT assay test, quantification of images with Image-J and counting. The results indicated that the quercetin increases expression of Nrf2 at concentration above 5 μM. Also differentiation and proliferation rate of NSCs is affected by various concentrations of quercetin in a dose-dependent manner.

Conclusion: These findings confirmed the dose-dependent effect of quercetin on proliferation and differentiation of cell. In addition, quercetin increased the expression of Nrf2 gene. By combining these two effects of quercetin, this substance can be considered an effective compound in the treatment of degenerative defects in CNS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11033-023-08707-8DOI Listing

Publication Analysis

Top Keywords

proliferation differentiation
12
quercetin increases
8
nrf2 expression
8
stem cells
8
quercetin
8
nrf2 gene
8
expression nrf2
8
nrf2
5
expression
5
differentiation
5

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Rethinking retinoic acid self-regulation: A signaling robustness network approach.

Curr Top Dev Biol

January 2025

Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology and Genomic Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States. Electronic address:

All-trans retinoic acid (ATRA) signaling is a major pathway regulating numerous differentiation, proliferation, and patterning processes throughout life. ATRA biosynthesis depends on the nutritional availability of vitamin A and other retinoids and carotenoids, while it is sensitive to dietary and environmental toxicants. This nutritional and environmental influence requires a robustness response that constantly fine-tunes the ATRA metabolism to maintain a context-specific, physiological range of signaling levels.

View Article and Find Full Text PDF

Introduction: Pancreatic cancer (PC) cannot currently be completely cured and has a poor prognosis. Necroptosis is a distinct form of regulated cell death that differs from both necrosis and apoptosis. Understanding the role of necroptosis during PC progression would open new avenues for targeted therapy.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

Integrated Genomics Reveal Potential Resistance Mechanisms of PANoptosis-Associated Genes in Acute Myeloid Leukemia.

Mol Carcinog

January 2025

Institute of Precision Medicine, The First Affiliated Hospital; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.

Acute myeloid leukemia (AML) is marked by the proliferation of abnormal myeloid progenitor cells in the bone marrow and blood, leading to low cure rates despite new drug approvals from 2017 to 2018. Current therapies often fail due to the emergence of drug resistance mechanisms, such as those involving anti-apoptotic pathways and immune evasion, highlighting an urgent need for novel approaches to overcome these limitations. Programmed cell death (PCD) is crucial for tissue homeostasis, with PANoptosis-a form of PCD integrating pyroptosis, apoptosis, and necroptosis-recently identified.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!