A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel function of the tomato CALCINEURIN-B LIKE 10 gene as a root-located negative regulator of salt stress. | LitMetric

A novel function of the tomato CALCINEURIN-B LIKE 10 gene as a root-located negative regulator of salt stress.

Plant Cell Environ

Dpto. Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura, Consejo Superior de Investigaciones Científicas, Espinardo, Murcia, Spain.

Published: November 2023

Climate change exacerbates abiotic stresses like salinization, negatively impacting crop yield, so development of strategies, like using salt-tolerant rootstocks, is crucial. The CALCINEURIN B-LIKE 10 (SlCBL10) gene has been previously identified as a positive regulator of salt tolerance in the tomato shoot. Here, we report a different function of SlCBL10 in tomato shoot and root, as disruption of SlCBL10 only induced salt sensitivity when it was used in the scion but not in the rootstock. The use of SlCBL10 silencing rootstocks (Slcbl10 mutant and RNAi line) improved salt tolerance on the basis of fruit yield. These changes were associated with improved Na and K homoeostasis, as SlCBL10 silencing reduced the Na content and increased the K content under salinity, not only in the rootstock but also in the shoot. Improvement of Na homoeostasis in Slcbl10 rootstock seems to be mainly due to induction of SlSOS1 expression, while the higher K accumulation in roots seems to be mainly determined by expression of LKT1 transporter and SlSKOR channel. These findings demonstrate that SlCBL10 is a negative regulator of salt tolerance in the root, so the use of downregulated SlCBL10 rootstocks may provide a suitable strategy to increase tomato fruit production under salinity.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14679DOI Listing

Publication Analysis

Top Keywords

regulator salt
12
salt tolerance
12
slcbl10
9
negative regulator
8
tomato shoot
8
slcbl10 silencing
8
homoeostasis slcbl10
8
salt
5
novel function
4
tomato
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!