MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbf.3836 | DOI Listing |
Cell Mol Life Sci
September 2024
Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Faculty of Health, Medicine and Life Sciences (FHML), Maastricht University, Maastricht, 6200, MD, The Netherlands.
Rett syndrome (RTT) is a neurodevelopmental disorder caused by de novo mutations in the MECP2 gene. Although miRNAs in extracellular vesicles (EVs) have been suggested to play an essential role in several neurological conditions, no prior study has utilized brain organoids to profile EV-derived miRNAs during normal and RTT-affected neuronal development. Here we report the spatiotemporal expression pattern of EV-derived miRNAs in region-specific forebrain organoids generated from female hiPSCs with a MeCP2:R255X mutation and the corresponding isogenic control.
View Article and Find Full Text PDFBr J Cancer
October 2023
Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
Biomed Rep
December 2023
School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia.
MicroRNA (miR)-367 has a wide range of functions in gene regulation and as such plays a critical role in cell proliferation, differentiation and development, making it an essential molecule in various physiological processes. miR-367 belongs to the miR-302/367 cluster and is located in the intronic region of human chromosome 4 on the 4q25 locus. Dysregulation of miR-367 is associated with various disease conditions, including cancer, inflammation and cardiac conditions.
View Article and Find Full Text PDFBr J Cancer
October 2023
Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK.
Background: MiR-371~373 and miR-302/367 cluster over-expression occurs in all malignant germ cell tumours (GCTs), regardless of age (paediatric/adult), site (gonadal/extragonadal), or subtype [seminoma, yolk sac tumour (YST), embryonal carcinoma (EC)]. Six of eight microRNAs from these clusters contain the seed sequence 'AAGUGC', determining mRNA targeting. Here we sought to identify the significance of these observations by targeting these microRNAs functionally.
View Article and Find Full Text PDFInt J Cancer
January 2024
Department of Pathology, University of Cambridge, Cambridge, UK.
Malignant germ-cell-tumours (GCTs) are characterised by microRNA (miRNA/miR-) dysregulation, with universal over-expression of miR-371~373 and miR-302/367 clusters regardless of patient age, tumour site, or subtype (seminoma/yolk-sac-tumour/embryonal carcinoma). These miRNAs are released into the bloodstream, presumed within extracellular-vesicles (EVs) and represent promising biomarkers. Here, we comprehensively examined the role of EVs, and their miRNA cargo, on (fibroblast/endothelial/macrophage) cells representative of the testicular GCT (TGCT) tumour microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!