Targeting - and -deficient tumors through synthetic lethality using poly(ADP-ribose) polymerase inhibitors (PARPi) has emerged as a successful strategy for cancer therapy. PARPi monotherapy has shown excellent efficacy and safety profiles in clinical practice but is limited by the need for tumor genome mutations in or other homologous recombination genes as well as the rapid emergence of resistance. In this study, we identified 2-chloro--diethylethanamine hydrochloride (CDEAH) as a small molecule that selectively kills - and xeroderma pigmentosum A-deficient cells. CDEAH is a monofunctional alkylating agent that preferentially alkylates guanine nucleobases, forming DNA adducts that can be removed from DNA by either a PARP1-dependent base excision repair or nucleotide excision repair. Treatment of -deficient cells leads to the formation of strand breaks, an accumulation of cells in S phase and activation of the DNA damage response. Furthermore, CDEAH selectively inhibits -deficient xenograft tumor growth compared to isogenic -proficient tumors. Collectively, we report the discovery of an alkylating agent inducing DNA damage that requires PARP1 activity for repair and acts synergistically with PARPi.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405566PMC
http://dx.doi.org/10.1093/narcan/zcad042DOI Listing

Publication Analysis

Top Keywords

2-chloro--diethylethanamine hydrochloride
8
hydrochloride cdeah
8
-deficient tumors
8
alkylating agent
8
excision repair
8
dna damage
8
alkylation nucleobases
4
nucleobases 2-chloro--diethylethanamine
4
cdeah
4
cdeah sensitizes
4

Similar Publications

In this study, we have designed and developed a cationic bolaform C12-(2,3-dihydroxy-N, N-dimethyl-N-(2-ureidoethyl)propan-1-aminium chloride)2 (C12(DDUPAC)2) that is derived from biocompatible molecules. The bolaform C12(DDUPAC)2 has hydroxyl (OH) functionality at both the cationic head groups. The impact of head group structure on the self-assembly and effectiveness of gene transfection and antimicrobial activity was investigated and compared with that of the hydrochloride salt C12-(N, N-dimethyl-N-(2-ureidoethan-1-aminium chloride)2 (C12(DUAC)2) of its precursor molecule.

View Article and Find Full Text PDF

Background: Hot-melt Pressure-sensitive Adhesives (HMPSA) are eco-friendly pressuresensitive adhesives, with the potential of being used as substrates for transdermal patches. However, due to the low hydrophilicity of HMPSA, the application is limited in the field of Traditional Chinese Medicine (TCM) plasters.

Methods: Three modified HMPSA were prepared with acrylic resin EPO, acrylic resin RL100, and Polyvinylpyrrolidone (PVP) as the modifying materials.

View Article and Find Full Text PDF

Objectives: Whether vortioxetine has a utility as an adjuvant drug in the treatment of bipolar depression remains controversial. This study aimed to validate the efficacy and safety of vortioxetine in bipolar depression.

Methods: Patients with bipolar Ⅱ depression were enrolled in this prospective, two-center, randomized, 12-week pilot trial.

View Article and Find Full Text PDF

In this research, the photophysical properties of metformin hydrochloride (MF-HCl) were studied using spectroscopic and molecular docking techniques. The interaction between metformin hydrochloride and caffeine is essential for understanding the pharmacokinetics of metformin, particularly in populations with high caffeine consumption. Metformin is a first-line medication for managing type 2 diabetes, while caffeine is a widely consumed dietary stimulant.

View Article and Find Full Text PDF

Purpose: Resting beat-to-beat blood pressure variability is a strong predictor of cardiovascular events and mortality. However, its underlying mechanisms remain incompletely understood. Given that the sympathetic nervous system plays a pivotal role in cardiovascular regulation, we hypothesized that alpha-1 adrenergic receptors (the main sympathetic receptor controlling peripheral vasoconstriction) may contribute to resting beat-to-beat blood pressure variability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!