On 21 March 2023 the Tanzania's Ministry of Health reported the first Marburg virus disease (MVD) outbreak in Bukoba District reporting a total of eight cases and five fatalities including one health care worker with a case fatality ratio of 62.5%. MVD is a filoviral infection with an estimated incubation of 3-21 days and causes severe hemorrhagic fever in humans. Fruit bats are significant reservoir host leading to animal-to-human transmission and human-to-human transmission by direct contact of body fluids from an infected person. Symptoms and signs include fever, vomiting, diarrhea, body malaise, massive hemorrhage, and multiorgan failure. Currently, no definitive treatment or licensed vaccines are available to date but only supportive care. This outbreak is an alarming concern to the neighboring countries to contain the outbreak. Within 3 years from 2020 to 2023 Tanzania has already recorded one pandemic, which is the novel coronavirus disease 2019 and two epidemics, which are Cholera, Dengue, and now MVD. Tanzanian's Ministry of Health is drawing lessons from the previous health emergencies to contain this particular epidemic. To impede the MVD outbreak in Tanzania, the focus of this commentary is on highlighting the efforts performed and the significant recommendations provided to relevant organizations and the general public.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406053 | PMC |
http://dx.doi.org/10.1097/MS9.0000000000001063 | DOI Listing |
Heliyon
December 2024
Institute of Virology, Philipps-University Marburg, 35043, Marburg, Germany.
[This corrects the article DOI: 10.1016/j.heliyon.
View Article and Find Full Text PDFBiomaterials
December 2024
Institute of Molecular Virology, Ulm University Medical Center, Ulm, 89081, Germany. Electronic address:
Retroviral gene transfer is the preferred method for stable, long-term integration of genetic material into cellular genomes, commonly used to generate chimeric antigen receptor (CAR)-T cells designed to target tumor antigens. However, the efficiency of retroviral gene transfer is often limited by low transduction rates due to low vector titers and electrostatic repulsion between viral particles and cellular membranes. To overcome these limitations, peptide nanofibrils (PNFs) can be applied as transduction enhancers.
View Article and Find Full Text PDFFront Immunol
January 2025
Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.
View Article and Find Full Text PDFFront Chem
December 2024
Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, Tamil Nadu, India.
Ebola and Marburg viruses, biosafety level 4 pathogens, cause severe hemorrhaging and organ failure with high mortality. Although some FDA-approved vaccines or therapeutics like Ervebo for Zaire Ebola virus exist, still there is a lack of effective therapeutics that cover all filoviruses, including both Ebola and Marburg viruses. Therefore, some anti-filovirus drugs such as Pinocembrin, Favipiravir, Remdesivir and others are used to manage infections.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
State Key Laboratory of Pathogenic Microorganisms, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, China.
Marburg virus disease (MVD) is a severe infectious disease characterized by fever and profound hemorrhage caused by the Marburg virus (MARV), with a mortality rate reaching 90%, posing a significant threat to humans. MARV lies in its classification as a biosafety level four (BSL-4) pathogen, which demands stringent experimental conditions and substantial funding. Therefore, accessible and practical animal models are urgently needed to advance prophylactic and therapeutic strategies for MARV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!