Covalent organic frameworks (COFs) have garnered enormous attention in anti-cancer therapy recently. However, the intrinsic drawbacks such as poor biocompatibility and low target-specificity greatly restrain the full clinical implementation of COF. Herein, we report a biomimetic multifunctional COF nanozyme, which consists of AIEgen-based COF (TPE-s COF) with encapsulated gold nanoparticles (Au NPs). The nanozyme was co-cultured with HepG2 cells until the cell membrane was fused with lipophilic TPE-s COF-Au@Cisplatin. By using the cryo-shocking method, we fabricated an inactivated form of the TPE-s COF-Au@Cisplatin nanozyme endocytosed in the HepG2 cell membrane (M@TPE-s COF-Au@Cisplatin), which lost their proliferative ability and pathogenicity. Upon laser irradiation, the M@TPE-s COF-Au@Cisplatin nanozymes cleaved, thereby releasing the TPE-s COF-Au nanozyme and Cisplatin to exert their photothermal and drug therapeutic effect. This work opens a new avenue to the synthesis of tumor-derived fluorescent TPE-s COF-Au nanozymes for highly efficient, synergetic, and targeted chemo-photothermal combination therapy of liver cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405260PMC
http://dx.doi.org/10.1016/j.isci.2023.107348DOI Listing

Publication Analysis

Top Keywords

covalent organic
8
targeted chemo-photothermal
8
chemo-photothermal combination
8
combination therapy
8
cell membrane
8
tpe-s cof-au@cisplatin
8
m@tpe-s cof-au@cisplatin
8
tpe-s cof-au
8
tpe-s
5
tumor-derived covalent
4

Similar Publications

Crystalline Covalent Triazine Frameworks and 2D Triazine Polymers: Synthesis and Applications.

Acc Chem Res

January 2025

School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China.

ConspectusCovalent triazine frameworks (CTFs) are a novel class of nitrogen-rich conjugated porous organic materials constructed by robust and functional triazine linkages, which possess unique structures and excellent physicochemical properties. They have demonstrated broad application prospects in gas/molecular adsorption and separation, catalysis, energy conversion and storage, etc. In particular, crystalline CTFs with well-defined periodic molecular network structures and regular pore channels can maximize the utilization of the features of CTFs and promote a deep understanding of the structure-property relationship.

View Article and Find Full Text PDF

Boosting Multicolor Emission Enhancement in Two-Dimensional Covalent-Organic Frameworks via the Pressure-Tuned π-π Stacking Mode.

Nano Lett

January 2025

Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Covalent-organic frameworks (COFs) are dynamic covalent porous organic materials constructed from emissive molecular organic building blocks. However, most two-dimensional (2D) COFs are nonemissive or weakly emissive in the solid state owing to the intramolecular rotation and vibration together with strong π-π interactions. Herein, we report a pressure strategy to achieve the bright multicolor emission from yellow to red in the 2D triazine triphenyl imine COF (TTI-COF).

View Article and Find Full Text PDF

Biomimetic Nanostructure Engineering of Ultralow Ir-Loading Electrocatalysts for Oxygen Reduction Reaction.

Inorg Chem

January 2025

Industrial Research Institute of Nonwovens & Technical Textiles, Shandong Engineering Research Center for Specialty Nonwoven Materials, College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, P. R. China.

Promoting the rate of the oxygen reduction reaction (ORR) is critical for boosting the overall energy efficiency of the flexible zinc-air batteries (FZABs). Inspired by nature, we designed "branch-leaf" like hierarchical porous carbon nanofibers with ultralow loadings of Ir nanoparticles (NPs) derived from covalent-organic framework/metal-organic framework (COF/MOF) core-shell hybrids. The as-obtained Ir/FeZn-hierarchical porous carbon nanofibers (HPCNFs) showcase enhanced ORR performance, and the ultralow Ir loading reduces the cost while maintaining catalytic capacity.

View Article and Find Full Text PDF

Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.

View Article and Find Full Text PDF

Hydrogen is a zero-emissive fuel and has immense potential to replace carbon-emitting fuels in the future. The development of efficient H sensors is essential for preventing hazardous situations and facilitating the widespread usage of hydrogen. Chemiresistors are popular gas sensors owing to their attractive properties such as fast response, miniaturization, simple integration with electronics and low cost.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!