A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vitamin D receptor-deficient keratinocytes-derived exosomal miR-4505 promotes the macrophage polarization towards the M1 phenotype. | LitMetric

Background: The vitamin D receptor (VDR) has a low level of expression in the keratinocytes of patients with psoriasis and plays a role in the development of the disease. Furthermore, the crosstalk between macrophages and psoriatic keratinocytes-derived exosomes is critical for psoriasis progression. However, the effects of VDR-deficient keratinocytes-derived exosomes (Exos-shVDR) on macrophages and their underlying mechanisms remain largely unknown.

Methods: VDR-deficient keratinocytes were constructed by infecting HaCaT cells with a VDR-targeting lentivirus, mimicking the VDR-deficient state observed in psoriatic keratinocytes. Exosomes were characterized using transmission electron microscopy, nanoparticle tracking analysis, and Western blot. The effect of Exos-shVDR on macrophage proliferation, apoptosis, and M1/M2 polarization was assessed using cell counting kit-8 assay (CCK-8), flow cytometer, real-time quantitative polymerasechain reaction (RT-qPCR), and enzyme-linked immunosorbent assay (ELISA). The mechanism underlying the effect of Exos-shVDR on macrophage function was elucidated through data mining, bioinformatics, RT-qPCR, and rescue experiments.

Results: Our results revealed that both Exos-shVDR and Exos-shNC exhibited typical exosome characteristics, including a hemispheroid shape with a concave side and particle size ranging from 50 to 100 nm. The levels of expression of VDR were significantly lower in Exos-shVDR than in Exos-shNC. Functional experiments demonstrated that Exos-shVDR significantly promoted macrophage proliferation and polarization towards the M1 phenotype while inhibiting macrophage apoptosis. Moreover, miR-4505 was highly expressed in the skin tissue of patients with psoriasis. Its overexpression significantly increased macrophage proliferation and polarization towards M1 and inhibited apoptosis. Furthermore, the effects of Exos-shVDR on macrophage function occur through miR-4505.

Conclusions: Exos-shVDR exacerbates macrophage proliferation, promotes polarization towards the M1 phenotype, and inhibits macrophage apoptosis by increasing the levels of miR-4505. These results indicate that modulation of macrophage function is a potential strategy for developing new drugs for the treatment of psoriasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10405794PMC
http://dx.doi.org/10.7717/peerj.15798DOI Listing

Publication Analysis

Top Keywords

macrophage proliferation
16
polarization phenotype
12
exos-shvdr macrophage
12
macrophage function
12
macrophage
10
patients psoriasis
8
keratinocytes-derived exosomes
8
exos-shvdr
8
exos-shvdr exos-shnc
8
proliferation polarization
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!