The bromodomain and extra-terminal (BET) proteins act as "readers" for lysine acetylation and facilitate the recruitment of transcriptional elongation complexes. BET protein is associated with transcriptional elongation of genes such as and , and is involved in the regulation of cell cycle and apoptosis. Meanwhile, BET inhibitors (BETi) have regulatory effects on immune checkpoints, immune cells, and cytokine expression. The role of BET proteins and BETi in a variety of tumors has been studied. This paper reviews the recent research progress of BET and BETi in hematologic tumors (mainly leukemia, lymphoma and multiple myeloma) from cellular level studies, animal studies, clinical trials, drug combination, etc. BETi has a promising future in hematologic tumors, and future research directions may focus on the combination with other drugs to improve the efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404881PMC
http://dx.doi.org/10.1016/j.gendis.2022.03.004DOI Listing

Publication Analysis

Top Keywords

hematologic tumors
12
clinical trials
8
trials drug
8
bet proteins
8
transcriptional elongation
8
bet
6
bet hematologic
4
tumors
4
tumors immunity
4
immunity pathogenesis
4

Similar Publications

Galectin-3 secreted by triple-negative breast cancer cells regulates T cell function.

Neoplasia

December 2024

Felsenstein Medical Research Center, Beilinson Campus, Petah Tikva, Israel; Tel Aviv University, Faculty of Medicine and Health Sciences, Tel Aviv, Israel; Rabin Medical Center, Beilinson Campus, Petah Tikva, Israel; Davidoff Cancer Center, Beilinson Campus, Petah Tikva, Israel. Electronic address:

Triple-negative breast cancer (TNBC) is an aggressive subtype that accounts for 10-15 % of breast cancer. Current treatment of high-risk early-stage TNBC includes neoadjuvant chemo-immune therapy. However, the substantial variation in immune response prompts an urgent need for new immune-targeting agents.

View Article and Find Full Text PDF

A Scoping Review of Chemotherapy-induced Peripheral Neuropathy-Related Gait Abnormalities in Children With Cancer.

Pediatr Phys Ther

January 2025

University of North Dakota School of Medicine, Department of Pediatrics, Grand Forks, North Dakota (Ms Washist and Dr Milanovich); Sanford Children's Hospital, Department of Physical Therapy, Sioux Falls, South Dakota (Dr Steventon); Sanford Children's Hospital, Department of Physical Therapy, Fargo, North Dakota (Dr Samuelson); Jamestown University, Department of Physical Therapy, Jamestown, North Dakota (Dr Anderson); University of South Dakota, Department of Physical Therapy, Vermillion, South Dakota (Dr Berg-Poppe); and Sanford Roger Maris Cancer Center, Department of Pediatric Hematology and Oncology, Fargo, North Dakota (Dr Milanovich).

Unlabelled: Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) with associated weakness, areflexia, neuropathic pain, and sensory loss, is a common occurrence in children treated for cancer. However, accurate, quantifiable descriptions of gait deviations due to CIPN are lacking. This scoping review explores common gait abnormalities in children with CIPN.

View Article and Find Full Text PDF

Standard: Human gastric cancer organoids.

Cell Regen

December 2024

Guangzhou National Laboratory, Guangzhou, 510005, China.

Gastric cancer is one of the most common malignancies with poor prognosis. The use of organoids to simulate gastric cancer has rapidly developed over the past several years. Patient-derived gastric cancer organoids serve as in vitro models that closely mimics donor characteristics, offering new opportunities for both basic and applied research.

View Article and Find Full Text PDF

In the last decades the survival of metastatic gastrointestinal (GI) cancer patients could have been significantly extended due to the introduction of targeted- and immunotherapy. However, only the minority of patients will experience long-lasting survival. Hence, novel therapeutics are clearly necessary for GI cancer patients.

View Article and Find Full Text PDF

Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders, and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib, and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!