Autophagy is an evolutionarily conserved process involved in the degradation of long-lived proteins and excessive or dysfunctional organelles. As a pivotal cellular response, autophagy has been extensively studied and is known to be involved in various diseases. Ferroptosis is a recently discovered form of regulated cell death characterized by iron overload, leading to the accumulation of lethal levels of lipid hydroperoxides. Recently, an increasing number of studies have revealed a link between autophagy and ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) is an urgent dilemma after myocardial infarction recanalization, which is regulated by several cell death pathways, including autophagy and ferroptosis. However, the potential relationship between autophagy and ferroptosis in MIRI remains unexplored. In this study, we briefly review the mechanisms of autophagy and ferroptosis, including their roles in MIRI. Moreover, we provide an overview of the potential crosstalk in MIRI. Clarifying the relationship between different cell death pathways may provide new ideas for the treatment of MIRI in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404879 | PMC |
http://dx.doi.org/10.1016/j.gendis.2022.02.012 | DOI Listing |
Pharmaceutics
January 2025
State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, College of Pharmacy, Wenzhou Medical University, Wenzhou 325035, China.
Tanshinone IIA (Tan IIA) is a lipophilic active constituent derived from the rhizomes and roots of (Danshen), a common Chinese medicinal herb. However, clinical applications of Tan IIA are limited due to its poor solubility in water. : To overcome this limitation, we developed a calcium alginate hydrogel (CA) as a hydrophilic carrier for Tan IIA, which significantly improved its solubility.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130117, China.
Cervical cancer poses a substantial threat to women's health, underscoring the necessity for effective therapeutic agents with low toxicity that specifically target cancer cells. As cancer progresses, increased glucose consumption causes glucose scarcity in the tumor microenvironment (TME). Consequently, it is imperative to identify pharmacological agents capable of effectively killing cancer cells under conditions of low glucose availability within the TME.
View Article and Find Full Text PDFAntibiotics (Basel)
December 2024
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation.
View Article and Find Full Text PDFBiology (Basel)
January 2025
Northeast Asian Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China.
miRNAs are small non-coding RNA molecules that play critical roles in the regulation of gene expression and have been closely associated with various diseases, including cancer. These molecules significantly influence the cell cycle of tumor cells and control programmed cell death (apoptosis). Currently, research on miRNAs has become a major focus in developing cancer therapies.
View Article and Find Full Text PDFCells
January 2025
Institute of General Pharmacology and Toxicology, Goethe University Frankfurt, 60590 Frankfurt, Germany.
Therapy resistance still constitutes a common hurdle in the treatment of many human cancers and is a major reason for treatment failure and patient relapse, concomitantly with a dismal prognosis. In addition to "intrinsic resistance", e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!