A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AIPSS-MF machine learning prognostic score validation in a cohort of myelofibrosis patients treated with ruxolitinib. | LitMetric

Background: In myelofibrosis (MF), new model scores are continuously proposed to improve the ability to better identify patients with the worst outcomes. In this context, the Artificial Intelligence Prognostic Scoring System for Myelofibrosis (AIPSS-MF), and the Response to Ruxolitinib after 6 months (RR6) during the ruxolitinib (RUX) treatment, could play a pivotal role in stratifying these patients.

Aims: We aimed to validate AIPSS-MF in patients with MF who started RUX treatment, compared to the standard prognostic scores at the diagnosis and the RR6 scores after 6 months of treatment.

Methods And Results: At diagnosis, the AIPSS-MF performs better than the widely used IPSS for primary myelofibrosis (C-index 0.636 vs. 0.596) and MYSEC-PM for secondary (C-index 0.616 vs. 0.593). During RUX treatment, we confirmed the leading role of RR6 in predicting an inadequate response by these patients to JAKi therapy compared to AIPSS-MF (0.682 vs. 0.571).

Conclusion: The new AIPSS-MF prognostic score confirms that it can adequately stratify this subgroup of patients already at diagnosis better than standard models, laying the foundations for new prognostic models developed tailored to the patient based on artificial intelligence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10598243PMC
http://dx.doi.org/10.1002/cnr2.1881DOI Listing

Publication Analysis

Top Keywords

rux treatment
12
prognostic score
8
artificial intelligence
8
aipss-mf
6
prognostic
5
patients
5
aipss-mf machine
4
machine learning
4
learning prognostic
4
score validation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!