Tunable optical topological transitions of plasmon polaritons in WTe van der Waals films.

Light Sci Appl

State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano-Photonic Structures (Ministry of Education), and Department of Physics, Fudan University, 200433, Shanghai, China.

Published: August 2023

Naturally existing in-plane hyperbolic polaritons and the associated optical topological transitions, which avoid the nano-structuring to achieve hyperbolicity, can outperform their counterparts in artificial metasurfaces. Such plasmon polaritons are rare, but experimentally revealed recently in WTe van der Waals thin films. Different from phonon polaritons, hyperbolic plasmon polaritons originate from the interplay of free carrier Drude response and interband transitions, which promise good intrinsic tunability. However, tunable in-plane hyperbolic plasmon polariton and its optical topological transition of the isofrequency contours to the elliptic topology in a natural material have not been realized. Here we demonstrate the tuning of the optical topological transition through Mo doping and temperature. The optical topological transition energy is tuned over a wide range, with frequencies ranging from 429 cm (23.3 microns) for pure WTe to 270 cm (37.0 microns) at the 50% Mo-doping level at 10 K. Moreover, the temperature-induced blueshift of the optical topological transition energy is also revealed, enabling active and reversible tuning. Surprisingly, the localized surface plasmon resonance in skew ribbons shows unusual polarization dependence, accurately manifesting its topology, which renders a reliable means to track the topology with far-field techniques. Our results open an avenue for reconfigurable photonic devices capable of plasmon polariton steering, such as canaling, focusing, and routing, and pave the way for low-symmetry plasmonic nanophotonics based on anisotropic natural materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10409815PMC
http://dx.doi.org/10.1038/s41377-023-01244-wDOI Listing

Publication Analysis

Top Keywords

optical topological
24
topological transition
16
plasmon polaritons
12
topological transitions
8
wte van
8
van der
8
der waals
8
in-plane hyperbolic
8
hyperbolic plasmon
8
plasmon polariton
8

Similar Publications

Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.

View Article and Find Full Text PDF

Origins and conservation of topological polarization defects in resonant photonic-crystal diffraction.

Nanophotonics

January 2025

Department of Electronic Science and Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.

We present a continuative definition of topological charge to depict the polarization defects on any resonant diffraction orders in photonic crystal slab regardless they are radiative or evanescent. By using such a generalized definition, we investigate the origins and conservation of polarization defects across the whole Brillouin zone. We found that the mode crossings due to Brillouin zone folding contribute to the emergence of polarization defects in the entire Brillouin zone.

View Article and Find Full Text PDF

Topological bound states in the continuum in a non-Hermitian photonic system.

Nanophotonics

January 2025

Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.

Topological insulators and bound states in the continuum represent two fascinating topics in the optical and photonic domain. The exploration of their interconnection and potential applications has emerged as a current research focus. Here, we investigated non-Hermitian photonics based on a parallel cascaded-resonator system, where both direct and indirect coupling between adjacent resonators can be independently manipulated.

View Article and Find Full Text PDF

Hybrid entanglement carrying orbital angular momentum.

Sci Bull (Beijing)

January 2025

State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:

Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.

View Article and Find Full Text PDF

Skyrmions can form regular arrangements, so-called skyrmion crystals (SkXs). A mode with multiple wavevectors q then describes the arrangement. While magnetic SkXs, which can emerge in the presence of Dzyaloshinskii-Moriya interaction, are well established, polar skyrmion lattices are still elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!