Wastewater surveillance has rapidly emerged as an early warning tool to track COVID-19. However, the early warning measurement of new SARS-CoV-2 variants of concern (VOCs) in wastewaters remains a major challenge. We herein report a rapid analytical strategy for quantitative measurement of VOCs, which couples nested polymerase chain reaction and liquid chromatography-mass spectrometry (nPCR-LC-MS). This method showed a greater selectivity than the current allele-specific quantitative PCR (AS-qPCR) for tracking new VOC and allowed the detection of multiple signature mutations in a single measurement. By measuring the Omicron variant in wastewaters across nine Ontario wastewater treatment plants serving over a three million population, the nPCR-LC-MS method demonstrated a better quantification accuracy than next-generation sequencing (NGS), particularly at the early stage of community spreading of Omicron. This work addresses a major challenge for current SARS-CoV-2 wastewater surveillance by rapidly and accurately measuring VOCs in wastewaters for early warning.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.estlett.2c00280DOI Listing

Publication Analysis

Top Keywords

early warning
16
warning measurement
8
measurement sars-cov-2
8
sars-cov-2 variants
8
variants concern
8
wastewater surveillance
8
surveillance rapidly
8
vocs wastewaters
8
major challenge
8
npcr-lc-ms method
8

Similar Publications

Challenges of BTV-Group Specific Serology Testing: No One Test Fits All.

Viruses

November 2024

The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Australian Animal Health Laboratory, Australian Centre for Disease Preparedness, 5 Portarlington Road, East Geelong, VIC 3219, Australia.

A newly formatted enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies to bluetongue virus (BTV) was developed and validated for bovine and ovine sera and plasma. Validation of the new sandwich ELISA (sELISA) was achieved with 949 negative bovine and ovine sera from BTV endemic and non-endemic areas of Australia and 752 BTV positive (field and experimental) sera verified by VNT and/or PCR. The test diagnostic sensitivity (DSe) and diagnostic specificity (DSp) were 99.

View Article and Find Full Text PDF

Calibration and Performance Evaluation of Cost-Effective Capacitive Moisture Sensor in Slope Model Experiments.

Sensors (Basel)

December 2024

Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan.

Understanding the factors that contribute to slope failures, such as soil saturation, is essential for mitigating rainfall-induced landslides. Cost-effective capacitive soil moisture sensors have the potential to be widely implemented across multiple sites for landslide early warning systems. However, these sensors need to be calibrated for specific applications to ensure high accuracy in readings.

View Article and Find Full Text PDF

Early identification of concrete cracks and multi-class detection can help to avoid future deformation or collapse in concrete structures. Available traditional detection and methodologies require enormous effort and time. To overcome such difficulties, current vision-based deep learning models can effectively detect and classify various concrete cracks.

View Article and Find Full Text PDF

A Signal-On Microelectrode Electrochemical Aptamer Sensor Based on AuNPs-MXene for Alpha-Fetoprotein Determination.

Sensors (Basel)

December 2024

Innovation Platform of Micro/Nano Technology for Biosensing, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China.

As a crucial biomarker for the early warning and prognosis of liver cancer diseases, elevated levels of alpha-fetoprotein (AFP) are associated with hepatocellular carcinoma and germ cell tumors. Herein, we present a novel signal-on electrochemical aptamer sensor, utilizing AuNPs-MXene composite materials, for sensitive AFP quantitation. The AuNPs-MXene composite was synthesized through a simple one-step method and modified on portable microelectrodes.

View Article and Find Full Text PDF

Seasonal Migratory Activity of the Beet Armyworm (Hübner) in the Tropical Area of China.

Insects

December 2024

The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

The beet armyworm (Hübner), a global pest, feeds on and affects a wide range of crops. Its long-distance migration with the East Asian monsoon frequently causes large-scale outbreaks in East and Southeast Asia. This pest mainly breeds in tropical regions in the winter season every year; however, few studies have investigated associations with its population movements in this region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!