The purpose of this study was to conduct a correlative assessment of SARS-CoV-2 RNA concentrations in wastewater with COVID-19 cases and a systematic evaluation of the effect of using different virus concentration methods and recovery and normalization approaches. We measured SARS-CoV-2 RNA concentrations at two different wastewater treatment plants (WWTPs) in the Bexar County of Texas from October 2020 to May 2021 (32 weeks) using reverse transcription droplet digital PCR (RT-ddPCR). We evaluated three different adsorption-extraction (AE) based virus concentration methods (acidification, addition of MgCl, or without any pretreatment) using bovine coronavirus (BCoV) as surrogate virus and observed that the direct AE method showed the highest mean recovery. COVID-19 cases were correlated significantly with SARS-CoV-2 N1 concentrations in Salitrillo (ρ = 0.75, < 0.001) and Martinez II (ρ = 0.68, < 0.001) WWTPs, but normalizing to a spiked recovery control (BCoV) or a fecal marker (HF183) reduced correlations for both treatment plants. The results generated in this 32-week monitoring study will enable researchers to prioritize the virus recovery method and subsequent correlation studies for wastewater surveillance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsestwater.2c00054 | DOI Listing |
Funct Integr Genomics
January 2025
Department of Clinical Laboratory, the Fourth Affiliated Hospital of School of medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China.
Since December 2019, the global dissemination of a novel coronavirus has precipitated a notable public health crisis, prompting considerable interest and scrutiny from governmental and scholarly entities. Substantial research efforts have been dedicated to exploring diverse facets of this novel coronavirus, encompassing its pathogenesis, transmission dynamics, and therapeutic interventions. Recent findings suggest that circular RNAs (circRNAs) exert a pivotal influence on modulating viral infectivity and immune defense mechanisms.
View Article and Find Full Text PDFMikrobiyol Bul
October 2024
The University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, Groningen, Netherlands.
As the number of coronavirus diseases-2019 (COVID-19) cases have decreased and measures have started to be implemented at an individual level rather than in the form of social restrictions, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) still maintains its importance and has already taken its place in the spectrum of agents investigated in multiplex molecular test panels for respiratory tract infections in routine diagnostic use. In this study, we aimed to present mutation analysis and clade distribution of whole genome sequences from randomly selected samples that tested positive with SARS-CoV-2 specific real-time reverse transcription polymerase chain reaction (rRT-PCR) test at different periods of the pandemic in our laboratory with a commercial easy-to-use kit designed for next-generation sequencing systems. A total of 84 nasopharyngeal/oropharyngeal swab samples of COVID-19 suspected patients which were sent for routine diagnosis to the medical microbiology laboratory and detected as SARSCoV-2 RNA positive with rRT-PCR were randomly selected from different periods for sequence analysis.
View Article and Find Full Text PDFEmerg Microbes Infect
January 2025
State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signaling pathway.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Virology, Biomedical Primate Research Centre (BPRC), Rijswijk, Netherlands.
Infection of an adult rhesus macaque with SARS-CoV-2 led to viral RNAemia in nose, throat, and lungs. The animal also presented extended fecal shedding of viral genomic and subgenomic messenger RNA and replication-competent virus for more than 3 weeks after infection. Positron emission tomography revealed increased intestinal glucose metabolism which was histologically related to inflammation of the ileum.
View Article and Find Full Text PDFCell Discov
January 2025
School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
We investigated a novel cancer immunotherapy strategy that effectively suppresses tumor growth in multiple solid tumor models and significantly extends the lifespan of tumor-bearing mice by introducing pathogen antigens into tumors via mRNA-lipid nanoparticles. The pre-existing immunity against the pathogen antigen can significantly enhance the efficacy of this approach. In mice previously immunized with BNT162b2, an mRNA-based COVID-19 vaccine encoding the spike protein of the SARS-CoV-2 virus, intratumoral injections of the same vaccine efficiently tagged the tumor cells with mRNA-expressed spike protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!