The demand for new soil fumigants has increased as a result of more restrictive legislation regarding the use of pesticides. In the present study, the potent nematicidal activity of volatile organic compounds released by the leaf macerate was demonstrated. In addition, we searched in the volatilome for a molecule with potential to be developed as a new fumigant nematicide. In the greenhouse, even the lowest concentration of soursop leaf macerate tested (1.0%) as a biofumigant caused a significant ( < 0.05) reduction in infectivity and reproduction when compared with the nontreated control (0%). Forty-one compounds were identified through gas chromatography-mass spectrometry analysis, of which three (sabinene, caryophyllene oxide, and 4-ethylbenzaldehyde) were selected for studies against the nematode. Among these compounds, in in vitro trails, only 4-ethylbenzaldehyde showed nematicidal activity at 250 µg ml. The effective doses of 4-ethylbenzaldehyde predicted to kill 50 and 95% of the second-stage juvenile population after 48 h of exposure were 35 and 88 µg ml, respectively. In in vitro tests, 4-ethylbenzaldehyde at 150 µg ml reduced egg hatching to values similar ( > 0.05) to those of the commercial nematicide fluensulfone at a concentration of 200 µg ml. In plant experiments, as a soil fumigant, 4-ethylbenzaldehyde at a dose of 1 ml/liter of substrate had an effect similar ( > 0.05) to that of the commercial fumigant Dazomet (250 µg ml). Therefore, 4-ethylbenzaldehyde shows potential for development as a new nematicide.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-05-22-1075-RE | DOI Listing |
Int J Mol Sci
January 2025
School of Life Science, Nanchang University, Nanchang 330031, China.
Abamectin is an insecticide, miticide and nematicide that has been extensively used in agriculture for many years. The excessive use of abamectin inevitably pollutes water and soil and might even cause adverse effects on aquatic biota. However, it is currently unclear how abamectin exposure causes neurotoxicity in aquatic organisms.
View Article and Find Full Text PDFRes Vet Sci
January 2025
Laboratório de Biotecnologia e Bioquímica Aplicada, Departamento de Química, Universidade Federal de Lavras, Lavras, MG, Brazil. Electronic address:
The aim of this study was to evaluate the proteolytic profile of the cell-free crude extract (CFCE) of Pleurotus djamor and its nematicidal action on Haemonchus spp. and Trichostrongylus spp. larvae in coprocultures.
View Article and Find Full Text PDFCells
January 2025
Nuclear Signaling Laboratory, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia.
Signal-dependent transport into and out of the nucleus mediated by members of the importin (IMP) superfamily is crucial for eukaryotic function, with inhibitors targeting IMPα being of key interest as anti-infectious agents, including against the apicomplexan species and , causative agents of malaria and toxoplasmosis, respectively. We recently showed that the FDA-approved macrocyclic lactone ivermectin, as well as several other different small molecule inhibitors, can specifically bind to and inhibit and IMPα functions, as well as limit parasite growth. Here we focus on the FDA-approved antiparasitic moxidectin, a structural analogue of ivermectin, for its IMPα-targeting and anti-apicomplexan properties for the first time.
View Article and Find Full Text PDFRev Bras Parasitol Vet
January 2025
Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF, Campos dos Goytacazes, RJ, Brasil.
This paper describes a novel in vivo study of Cymbopogon citratus (lemon grass) to assess its anthelmintic activity. To this end, C57BL/6 mice were separated into three groups: G1: uninfected; G2: negative control infected with Heligmosomoides polygyrus bakeri and administered with 3% dimethyl sulfoxide (DMSO); and G3: infected with H. polygyrus bakeri and treated with C.
View Article and Find Full Text PDFMicroorganisms
December 2024
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming 650091, China.
Root-knot nematodes (RKNs) are pathogens that endanger a wide range of crops and cause serious global agricultural losses. In this study, we investigated metabolites of the endoparasitic fungus YMF1.01751, with the expectation of discovering valuable biocontrol compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!