Divalent Heterometal Doped Titanium-Oxide Cluster Polymers: Structures, Photoresponse, and Photocatalysis.

Inorg Chem

Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.

Published: August 2023

Five cluster polymers based on heterometal-doped titanium-oxide cluster (TOC) monomers are reported. The monomers feature Ti-oxide cluster cores and are connected to the divalent closed-shell heterometal anchors by salicylate ligands. The Sr, Ba, and Pb dopants cause the monomers to bind head-to-head and generate linear chains, while the Ca and Cd lead to head-to-tail connections and zigzag chains. The cluster polymers are responsive to visible-light up to 565 nm and photo-catalytically active in both H evolution and CO/epoxide cycloaddition reactions. The photo-absorption, photo-charge separation, and photocatalytic properties of the cluster polymers are dependent on the heterometal dopants in order Cd > Pb > Ba > Sr > Ca. Heterometals serve as the catalytic sites in the cluster polymers, which depending on the contribution of the pCB bottom, facilitate photo-charge separation and interfacial charge transfer, further enhancing catalytic activity. The tunable compositions and topologies of the cluster polymers shown herein may inspire the design and synthesis of more multidimensional functional metal-oxide cluster materials for a variety of applications in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.3c01842DOI Listing

Publication Analysis

Top Keywords

cluster polymers
24
cluster
9
titanium-oxide cluster
8
photo-charge separation
8
polymers
6
divalent heterometal
4
heterometal doped
4
doped titanium-oxide
4
polymers structures
4
structures photoresponse
4

Similar Publications

Nuclear actin polymerization was reported to control different nuclear processes, but its regulation is poorly understood. Here, we show that N-WASP can trigger the formation of nuclear N-WASP/F-actin nodules. While a cancer hotspot mutant of N-WASP lacking the VCA domain (V418fs) had a dominant negative function on nuclear F-actin, an even shorter truncation mutant found in melanoma (R128*) strongly promoted nuclear actin polymerization.

View Article and Find Full Text PDF

The increasing global demand for plastic has raised the need for effective waste plastic management due to its long lifetime and resistance to environmental degradation. There is a need for rapid plastic identification to improve the mechanical waste plastic sorting process. This study presents a novel application of Temperature-Programmed Desorption-Direct Analysis in Real Time-High Resolution Mass Spectrometry (TPD-DART-HRMS) that enables rapid characterization of various plastics.

View Article and Find Full Text PDF

Machine learning (ML) has emerged as a transformative tool in various industries, driving advancements in key tasks like classification, regression, and clustering. In the field of chemical engineering, particularly in the creation of biomedical devices, personalization is essential for ensuring successful patient recovery and rehabilitation. Polylactic acid (PLA) is a material with promising potential for applications like tissue engineering, orthopedic implants, drug delivery systems, and cardiovascular stents due to its biocompatibility and biodegradability.

View Article and Find Full Text PDF

Pancreatic cystic changes in adults are increasingly identified through advanced cross-sectional imaging. However, the impact of initial/intra-lobular epithelial remodeling on the local β-cell population remains unclear. In this study, we examined 10 human cadaveric donor pancreases (tail and body regions) via integration of stereomicroscopy, clinical H&E histology, and 3D immunohistochemistry, identifying 36 microcysts (size: 1.

View Article and Find Full Text PDF

Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission.

PLoS Comput Biol

January 2025

Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America.

Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!