Human sleep is cyclical with a period of approximately 90 minutes, implying long temporal dependency in the sleep data. Yet, exploring this long-term dependency when developing sleep staging models has remained untouched. In this work, we show that while encoding the logic of a whole sleep cycle is crucial to improve sleep staging performance, the sequential modelling approach in existing state-of-the-art deep learning models are inefficient for that purpose. We thus introduce a method for efficient long sequence modelling and propose a new deep learning model, L-SeqSleepNet, which takes into account whole-cycle sleep information for sleep staging. Evaluating L-SeqSleepNet on four distinct databases of various sizes, we demonstrate state-of-the-art performance obtained by the model over three different EEG setups, including scalp EEG in conventional Polysomnography (PSG), in-ear EEG, and around-the-ear EEG (cEEGrid), even with a single EEG channel input. Our analyses also show that L-SeqSleepNet is able to alleviate the predominance of N2 sleep (the major class in terms of classification) to bring down errors in other sleep stages. Moreover the network becomes much more robust, meaning that for all subjects where the baseline method had exceptionally poor performance, their performance are improved significantly. Finally, the computation time only grows at a sub-linear rate when the sequence length increases.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3303197DOI Listing

Publication Analysis

Top Keywords

sleep staging
16
sleep
10
long sequence
8
deep learning
8
eeg
5
l-seqsleepnet
4
l-seqsleepnet whole-cycle
4
whole-cycle long
4
sequence modeling
4
modeling automatic
4

Similar Publications

Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.

View Article and Find Full Text PDF

Study Objectives: Poor sleep may play a role in the risk of dementia. However, few studies have investigated the association between polysomnography (PSG)-derived sleep architecture and dementia incidence. We examined the relationship between sleep macro-architecture and dementia incidence across five US-based cohort studies from the Sleep and Dementia Consortium (SDC).

View Article and Find Full Text PDF

Synergistic integration of brain networks and time-frequency multi-view feature for sleep stage classification.

Health Inf Sci Syst

December 2025

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming, 650504 Yunnan China.

For diagnosing mental health conditions and assessing sleep quality, the classification of sleep stages is essential. Although deep learning-based methods are effective in this field, they often fail to capture sufficient features or adequately synthesize information from various sources. For the purpose of improving the accuracy of sleep stage classification, our methodology includes extracting a diverse array of features from polysomnography signals, along with their transformed graph and time-frequency representations.

View Article and Find Full Text PDF

Restless legs syndrome (RLS) is characterized by an uncomfortable urge to move the legs, worsened in the evening, occurring at rest, and relieved temporarily by movement. Although its pathophysiology remains incompletely understood, oxidative stress has been suggested. Uric acid (UA) is a marker associated with oxidative stress, and its reduced levels pose a risk for certain neurodegenerative diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the prevalence and factors related to depression and anxiety among individuals with chronic kidney disease (CKD) in the UK, revealing that significant portions experience these mental health issues.
  • Participants completed an online survey that assessed mental health history and treatment preferences, finding that over half had a history of diagnosed depression and many preferred in-person support.
  • The results indicated that certain demographics, including age and gender, as well as factors like self-efficacy and current treatment, were significantly related to the levels of depression and anxiety symptoms, but differences in symptoms were not influenced by the kidney service centers’ location or size.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!