Hierarchical zeolites are highly-desired catalysts in the petrochemical industry due to their shorter diffusion length, faster diffusion rate, and better accessibility to active acid sites compared with conventional zeolites. Herein, we report a simple amino-acid-assisted method to synthesize urchin-like hollow hierarchical FER zeolites with abundant mesopores and macroporous inner cavities. An amino acid (i. e. L-lysine) is used to facilitate the agglomeration of primary gel nanoparticles. The preferential nucleation and crystal growth at the external surfaces together with the lagged crystallization of the inner core of the agglomerates results in the formation of hollow inner cavities after the exhaustion of interior materials. Thanks to the unique hierarchical structure and more accessible acid sites, the hollow hierarchical FER zeolite exhibits improved catalytic performance over the conventional one in the skeletal isomerization of 1-butene to isobutene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202301608 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!