Herein, we optimize the primary solvation sheath to investigate the fundamental correlation between battery performance and electrode-electrolyte interfacial properties through electrolyte solvation chemistry. Experimental and theoretical analyses reveal that the primary solvation sheath with a self-purifying feature can "positively" scavenge both the HF and PF (hydrolysis of ion-paired LiPF), stabilize the PF anion-derived electrode-electrolyte interfaces, and thus boost the cycling performances. Being attributed with these superiorities, the NCM811//Li Li metal battery (LMB) with the electrolyte containing the optimized solvation sheath delivers 99.9% capacity retention at 2.5 C after 250 cycles. To circumvent the impact of excess Li content of Li metal on the performance of NCM811 cathode, the as-fabricated NCM811//graphite Li ion battery (LIB) also delivers a high-capacity retention of 90.1% from the 5th to the 100th cycle at 1 C. This work sheds light on the strong ability of the primary solvation sheath to regulate cathode interfacial properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.3c01679 | DOI Listing |
Int J Mol Sci
December 2024
Department of Energy and Materials Engineering and Advanced Energy and Electronic Materials Research Center, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
In lithium metal batteries, accurately estimating the Li solvation ability of solvents is essential for effectively modulating the Li solvation sheath to form a stable interphase and achieve high ionic conductivity. However, previous studies have shown that the theoretically calculated Li binding energy, commonly used to evaluate solvation ability, exhibits only a moderate correlation with experimentally measured ionic conductivity (R = 0.68).
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Materials Science and Engineering, Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials of Ministry of Education, Anhui University of Technology, Maanshan 243002, China; Key Laboratory of Efficient Conversion and Solid-state Storage of Hydrogen & Electricity of Anhui Province, Maanshan 243002, China. Electronic address:
Ether-based electrolytes are known for their high stability with lithium metal anodes (LMAs), but they often exhibit poor high-voltage stability. Structural optimization of ether-based solvent molecules has been proven to effectively broaden the electrochemical window of these electrolytes, yet the optimization rules within cyclic ethers remain unclear. Herein, we investigate the impact of methyl substitution positions on the molecular properties of 1,3-dioxolane (DOL), a commonly used cyclic ether.
View Article and Find Full Text PDFAdv Mater
December 2024
Department of Chemistry, Pohang University of Science and Technology (POSTECH), 37673, Pohang, Republic of Korea.
Water is pursued as an electrolyte solvent for its non-flammable nature compared to traditional organic solvents, yet its narrow electrochemical stability window (ESW) limits its performance. Solvation chemistry design is widely adopted as the key to suppress the reactivity of water, thereby expanding the ESW. In this study, an acetamide-based ternary eutectic electrolyte achieved an ESW ranging from 1.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The high activity of water in aqueous battery electrolytes can trigger side reactions, limiting their large-scale application. Additives that form contact pairs (CPs) with cations by coordinating with them can effectively reduce water's activity. However, due to the complex interactions between ions, additives, and solvent molecules and the fact that current strategies for additive screening primarily rely on static physical parameters, the dynamic mechanisms that govern the modulation of ion solvation sheaths are still poorly understood.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Central South University, School of Metallurgy and Environment, CHINA.
The recycling of critical metals from spent lithium-ion batteries represents a significant step towards meeting the enhancing resource requirements in the new energy industry. Nevertheless, achieving effective leaching of metals from the stable metal-oxygen (MO6) structure of spent ternary cathodes and separation of metal products simultaneously still remained a huge challenge towards industrial applications. Herein, a competitive coordination strategy was proposed to design a novel deep eutectic solvent (DESs), which improved both leaching and selective metal recycling capacity even at high solid-liquid ratio (1:10).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!