Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogel-based biomaterials have gained broad acceptance for tissue engineering and drug delivery applications. As their function generally depends on their localization, identifying the hydrogel position in the body is relevant and will alert physicians about potentially dangerous hydrogel migration. Monitoring the localization of hydrogels by imaging is challenging due to their high water content. Here, we developed a method to render alginate hydrogels visible on computed tomography (CT) and X-ray for real-time tracking of hydrogels inside the body. This method is based on physically immobilizing emulsion droplets of ethiodized oil, an FDA-approved positive CT contrast agent, in calcium-crosslinked alginate hydrogels. We prepared an oil-in-water emulsion of ethiodized oil with micron-sized emulsion droplets and encapsulated it in a calcium-crosslinked alginate hydrogel. This injectable in situ-forming hydrogel was stable for at least 2 weeks in vitro, visible on CT and X-ray in mice, and showed contrast agent concentration-dependent signal intensities. Hydrogels retrieved from mice after imaging had suitable rheological properties with a storage modulus of about 2 kPa and a loss modulus of about 0.35 kPa. This proof-of-concept study highlights the potential of ethiodized oil to localize hydrogels in real time inside the body and identifies a new use of this FDA-approved contrast agent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1208/s12248-023-00843-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!