A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Intrinsic and strain dependent ultralow thermal conductivity in novel AuX (X = Cu, Ag) monolayers for outstanding thermoelectric applications. | LitMetric

A large power factor and ultralow lattice thermal conductivity in 2D-monolayers of AuX (X = Cu and Ag) are achieved first principles calculations. Low phonon frequency, small Debye temperature and high Gruneisen parameter limit the intrinsic thermal conductivity of both the studied materials. An ultra-low lattice thermal conductivity of 0.13 (0.30) W m K and 0.66 (1.59) W m K is obtained for unstrained AuCu and AuAg monolayers, respectively, at 700 (300) K, which further reduces to 0.04 (0.09) and 0.26 (0.63) W m K at 6% biaxial tensile strain. Such values of thermal conductivity are lower than the critical thermal conductivity for the state-of-art thermoelectric materials ( < 2 W m K). The peak values of for unstrained monolayers are 2.20 and 1.40, which enhances to 3.61 and 2.91 at 6% strain for AuCu and AuAg monolayers, respectively. Interestingly pudding-mold band textures are found to be responsible for this unusual thermoelectric behaviour. The stability concerns (chemical/dynamic/mechanical) of these monolayers are ensured to stimulate experimental determinations for novel synthesis and possible applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3cp01038dDOI Listing

Publication Analysis

Top Keywords

thermal conductivity
24
lattice thermal
8
aucu auag
8
auag monolayers
8
thermal
6
conductivity
6
monolayers
5
intrinsic strain
4
strain dependent
4
dependent ultralow
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!