Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this feature article, an overview of the chemistry of pyramidanes, as a novel class of main group element clusters, is given. A general introduction sets the scene, briefly presenting the non-classical pyramidal geometry of tetracoordinate carbon, as opposed to the classical tetrahedral configuration. Pyramidanes, as the simplest organic compounds possessing a pyramidal carbon atom, are then discussed from both computational and experimental viewpoints, to show the theoretical predictions on the stability and thus the feasibility of pyramidanes has finally culminated in the isolation of the first stable representatives of the pyramidane family featuring heavy main group elements at the apex of the square pyramid. Synthetic strategies towards pyramidanes, as well as their peculiar structural features, non-classical bonding situations, and specific reactivity, are presented and discussed in this review.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d3cc02757k | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!