The domestic cat (Felis catus) is an obligate carnivore, and as such has a meat-based diet. Several studies on the taste perception of cats have been reported, indicating that their sense of taste has evolved based on their carnivorous diet. Here, we propose that umami (mediated by Tas1r1-Tas1r3) is the main appetitive taste modality for the domestic cat by characterizing the umami taste of a range of nucleotides, amino acids, and their mixtures for cats obtained using complementary methods. We show for the first time that cats express Tas1r1 in taste papillae. The cat umami receptor responds to a range of nucleotides as agonists, with the purine nucleotides having the highest activity. Their umami receptor does not respond to any amino acids alone; however, 11 l-amino acids with a range of chemical characteristics act as enhancers in combination with a nucleotide. l-Glutamic acid and l-Aspartic acid are not active as either agonists or enhancers of the cat umami receptor due to changes in key binding residues at positions 170 and 302. Overall, cats have an appetitive behavioral response for nucleotides, l-amino acids, and their mixtures. We postulate that the renowned palatability of tuna for cats may be due, at least in part, to its specific combination of high levels of inosine monophosphate and free l-Histidine that produces a strong synergistic umami taste enhancement. These results demonstrate the critical role that the umami receptor plays in enabling cats to detect key taste compounds present in meat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10468298 | PMC |
http://dx.doi.org/10.1093/chemse/bjad026 | DOI Listing |
Food Chem
December 2024
Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China; School of Food Science and Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:
J Agric Food Chem
January 2025
Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, United States.
Through a quantitative analysis of saltiness perception, favorable enzymatic hydrolysis parameters were confirmed for the preparation of saltiness-enhancing peptide mixtures from . The enzymatic hydrolysate was fractionated into four fractions (F1-F4) by gel chromatography, with F3 exhibiting the strongest saltiness-enhancing effect (22% increase). LC-MS/MS analysis of F3 identified 36 peptides, and their secondary structures and interactions with the TMC4 receptor were examined through circular dichroism spectroscopy and molecular docking.
View Article and Find Full Text PDFFoods
November 2024
College of Food Science and Technology, College of Food Science and Engineering, Guangdong Ocean University, Zhanjiang 524088, China.
Umami peptides have the ability to enhance food flavours and have potential health benefits. The objective of this study was to conduct a comprehensive investigation into the umami intensity, taste mechanism, and antioxidant activity of six umami peptides derived from wheat gluten hydrolysates (WGHs) and fermented WGHs. The e-tongue analysis demonstrated that the peptides exhibited a direct proportionality in terms of umami value and concentration, and were capable of enhancing the umami of commercially available condiments.
View Article and Find Full Text PDFProtein Expr Purif
March 2025
Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France. Electronic address:
Bitter is one of the five basic taste qualities, along with salty, sour, sweet and umami, used by mammals to access the quality of their food and orient their eating behaviour. Bitter taste detection prevents the ingestion of food potentially contaminated by bitter-tasting toxins. Bitter taste perception is mediated by a family of G protein-coupled receptors (GPCRs) called TAS2Rs.
View Article and Find Full Text PDFNutrients
November 2024
Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA 23298, USA.
In our diet, we ingest a variety of compounds that are TRPV1 modulators. It is important to understand if these compounds alter neural and behavioral responses to taste stimuli representing all taste qualities. Here, we will summarize the effects of capsaicin, resiniferatoxin, cetylpyridinium chloride, ethanol, nicotine, -geranyl cyclopropylcarboxamide, Kokumi taste peptides, pH, and temperature on neural and behavioral responses to taste stimuli in rodent models and on human taste perception.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!