The primary objective of this investigation was the synthesis, spectral interpretation and evaluation of the α-amylase inhibition of rationally designed thiazolidinedione-triazole conjugates (). The designed compounds were synthesized by stirring a mixture of thiazolidine-2,4-dione, propargyl bromide, cinnamaldehyde and azide derivatives in polyethylene glycol-400. The α-amylase inhibitory activity of the synthesized conjugates was examined by integrating and studies. The investigated derivatives exhibited promising α-amylase inhibitory activity, with IC values ranging between 0.028 and 0.088 μmol ml. Various computational approaches were employed to get detailed information about the inhibition mechanism. The thiazolidinedione-triazole conjugate , with IC = 0.028 μmol ml, was identified as the best hit for inhibiting α-amylase.

Download full-text PDF

Source
http://dx.doi.org/10.4155/fmc-2023-0144DOI Listing

Publication Analysis

Top Keywords

α-amylase inhibitory
12
thiazolidinedione-triazole conjugates
8
inhibitory activity
8
α-amylase
5
conjugates design
4
design synthesis
4
synthesis probing
4
probing α-amylase
4
inhibitory potential
4
potential primary
4

Similar Publications

Background: Genetic studies indicate a causal role for microglia, the innate immune cells of the central nervous system (CNS), in Alzheimer's disease (AD). Despite the progress made in identifying genetic risk factors, such as CD33, and underlying molecular changes, there are currently limited treatment options for AD. Based on the immune-inhibitory function of CD33, we hypothesize that inhibition of CD33 activation may reverse microglial suppression and restore their ability to resolve inflammatory processes and mitigate pathogenic amyloid plaques, which may be neuroprotective.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Bioengineering, University of California, Los Angeles, CA, USA, Los Angeles, CA, USA.

Background: The initiation of amyloid plaque deposition signifies a crucial stage in Alzheimer's disease (AD) progression, which often coincides with the disruption of neural circuits and cognitive decline. While the role of excitatory-inhibitory balance is increasingly recognized in AD pathophysiology, targeted therapies to modulate this balance remain underexplored. This study investigates the effect of perampanel, a selective non-competitive AMPA receptor antagonist, in modulating neurophysiological changes in hAPP-J20 transgenic Alzheimer's mice.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.

Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Loma Linda University Health, Loma Linda, CA, USA.

Background: Only about 50% of the variance in cognitive decline occurring during Alzheimer's pathogenesis is attributable to standard AD biomarkers (cerebrocortical Aβ, pathological tau, and atrophy) (Tosun et al., Alzheimer's Dement. 18: 1370, 2022).

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!