Purpose: Neurofilament light chain (NfL) is a neuronal cytoskeletal protein that has been identified as a marker of neurodegeneration in diseases of the central nervous system. In this study, we investigated whether NfL in the aqueous humor (AH) can serve as a marker of neurodegeneration in glaucoma in a racially diverse North American population.
Design: Single-center, case-control study.
Participants: We enrolled patients with various types and stages of glaucoma undergoing planned ophthalmic surgery as part of their routine care and compared them with patients without glaucoma undergoing phacoemulsification for age-related cataract.
Methods: We collected AH from 39 glaucoma patients and 10 patients without glaucoma. AH NfL was quantified using the Single-Molecule Array (Simoa) NF-light assay (Quanterix). Demographic information, such as age, body mass index, sex, and self-reported race, as well as clinical information, such as pre-operative intraocular pressure (IOP), maximum IOP, and number of pre-operative glaucoma medications, was obtained by reviewing the medical record.
Main Outcome Measures: Levels of AH NfL.
Results: In a model controlling for age and body mass index (BMI), NfL was significantly elevated in AH from glaucoma patients (mean: 429 pg/mL; standard deviation [SD]: 1136 pg/mL) compared to AH from patients without glaucoma (mean: 3.1 pg/mL; SD: 1.9 pg/mg): P = 0.002. Higher AH NfL was associated with higher maximum IOP (R = 0.44, P = 0.005), higher pre-operative IOP (R = 0.46, P = 0.003), and more pre-operative glaucoma medications (R = 0.61, P < 0.001). There was no association between AH NfL and Humphrey visual field mean deviation (R = -0.20, P = 0.220), retinal nerve fiber layer thickness as measured with optical coherence tomography (R = 0.07, P = 0.694), or glaucoma stage (R = 0.015, P = 0.935).
Conclusion: Our findings suggest that AH NfL may have clinical utility as a marker of glaucomatous neurodegeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10404437 | PMC |
http://dx.doi.org/10.2147/OPTH.S417664 | DOI Listing |
Sleep Biol Rhythms
January 2025
Bahcesehir University Medical Faculty, Neurology, Istanbul, Turkey.
Restless legs syndrome (RLS) is characterized by an uncomfortable urge to move the legs, worsened in the evening, occurring at rest, and relieved temporarily by movement. Although its pathophysiology remains incompletely understood, oxidative stress has been suggested. Uric acid (UA) is a marker associated with oxidative stress, and its reduced levels pose a risk for certain neurodegenerative diseases.
View Article and Find Full Text PDFActas Esp Psiquiatr
January 2025
Lab of Stem Cells and Tissue Engineering, Chongqing Medical University, 400016 Chongqing, China; Department of Histology and Embryology, Chongqing Medical University, 400016 Chongqing, China.
Background: Neural stem cells (NSCs) disrupt with aging, contributing to neurodegeneration. Ginsenoside Rg1 (Rg1), a compound found in Ginseng, is known for its anti-aging effects; however, its role in the progression of aging NSCs remains unclear. Therefore, this investigation explored the impact of Rg1 on the growth and maturation of aging NSC and elucidated its underlying molecular mechanisms.
View Article and Find Full Text PDFJ Nutr
January 2025
USDA-ARS, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA. Electronic address:
Background: Acute neuroinflammatory and oxidative-stress (OS)-inducing stressors, such as high energy and charge (HZE) particle irradiation, produce accelerated aging in the brain. Anti-inflammatory and antioxidant foods, such as blueberries (BB), attenuate neuronal and cognitive deficits when administered to rodents before or both before and after HZE particle exposure. However, the effects of post-stressor treatments are unknown and may be important to repair initial damage and prevent progressive neurodegeneration.
View Article and Find Full Text PDFDrug Discov Today
January 2025
Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, ME4 4TB, UK; Faculty of Medicine, Tbilisi State University, Tbilisi 0179, Georgia. Electronic address:
Increasing evidence from fluid biopsies suggests activation and injury of glial cells in epilepsy. The prevalence of clinical and subclinical seizures in neurodegenerative conditions such as Alzheimer's disease, frontotemporal dementia, and others merits review and comparison of the effects of seizures on glial markers in epilepsy and neurodegenerative diseases with concomitant seizures. Herein, we revisit preclinical and clinical reports of alterations in glial proteins in cerebrospinal fluid and blood associated with various types of epilepsy.
View Article and Find Full Text PDFExp Eye Res
January 2025
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic center, Sun Yat-sen University, Guangzhou 510000, Guangdong, China. Electronic address:
Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!