Atorvastatin reduces alloxan-induced impairment of aversive stimulus memory in mice.

Asian Biomed (Res Rev News)

Department of Pharmacology, Ondokuz Mayıs University, Faculty of Medicine, Atakum, Samsun 55139, Turkey.

Published: April 2022

Background: An association between dysregulated glucose levels in patients with diabetes mellitus and detrimental effects on the central nervous system, particularly in Alzheimer disease, has been recognized. Atorvastatin treatment has improved memory and cognition in some patients with diabetes mellitus and Alzheimer disease.

Objectives: To determine possible neuroprotective effects of atorvastatin on memory and cognition by measuring changes in an adverse stimulus avoidance learning deficit induced by alloxan in a murine model of diabetes mellitus and impaired memory and cognition.

Methods: We administered 150 mg/kg and 100 mg/kg alloxan in saline (intraperitoneally, i.p.) at a 48 h interval to produce a model of diabetes mellitus in male BALB/c mice. An oral glucose tolerance test (OGTT) was used to assess blood glucose regulation. After demonstrating hyperglycemia in mice (n = 7 per group) we administered vehicle (saline, i.p.), atorvastatin (10 mg/kg, i.p.), or liraglutide (200 μg/kg, i.p.) for 28 d except for those in a negative control group, which were given saline instead of alloxan, and a group administered atorvastatin alone, which were given saline instead of alloxan followed by atorvastatin (10 mg/kg, i.p.) for 28 d. Locomotor activity was measured 24 h after the final drug treatments, and subsequently their learned behavioral response to an adverse electrical stimulus to their plantar paw surface in a dark compartment was measured using a passive avoidance apparatus (Ugo Basile) in a model of impaired memory and cognition associated with Alzheimer disease. To determine any deficit in their learned avoidance of the adverse stimulus, we measured the initial latency or time mice spent in an illuminated white compartment before entering the dark compartment in the learning trial, and on the day after learning to avoid the adverse stimulus, the retention period latency in the light compartment and time spent in the dark compartment.

Results: Atorvastatin alone produced no significant change in blood glucose levels ( = 0.80, = 0.55) within 2 h. Liraglutide decreased blood glucose levels after 0.5 h ( = 11.7, < 0.001). We found no significant change in locomotor activity in any group. In mice with alloxan-induced diabetes, atorvastatin significantly attenuated the decreased avoidance associated with the diabetes ( = 38.0, = 0.02) and liraglutide also significantly attenuated the decreased avoidance ( = 38.0, < 0.001). Atorvastatin alone had no significant effect on the adversive learned response compared with vehicle treatment ( = 38.0, > 0.05). Atorvastatin significantly decreased the time mice with alloxan-induced diabetes spent in the dark compartment compared with mice in the diabetes group without atorvastatin treatment ( = 53.9, = 0.046). Liraglutide also significantly reduced the time mice with alloxan-induced diabetes spent in the dark compartment compared with vehicle-treated mice with alloxan-induced diabetes ( = 53.9, < 0.001). Atorvastatin treatment alone had no significant effect on the time mice spent in dark compartment compared with the control group ( = 53.9, > 0.05).

Conclusion: Atorvastatin significantly attenuated the adverse stimulus avoidance learning deficit in the alloxan-induced murine model of diabetes suggesting decreased impairment of memory and cognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10321169PMC
http://dx.doi.org/10.2478/abm-2022-0009DOI Listing

Publication Analysis

Top Keywords

dark compartment
20
diabetes mellitus
16
memory cognition
16
adverse stimulus
16
time mice
16
spent dark
16
mice alloxan-induced
16
alloxan-induced diabetes
16
atorvastatin
13
glucose levels
12

Similar Publications

Preclinical and in silico studies of 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea: a promising agent for depression and anxiety.

Eur J Pharmacol

January 2025

Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan-23200, Pakistan; Department of Pharmacy, Korea University, Sejong 20019, South Korea. Electronic address:

The study investigated the anxiolytic, antidepressant, sedative/hypnotic and in silico molecular docking properties of the synthetic ephedrine-based derivative of thiourea, 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methylthiourea. Safety profile of the compound at various doses was determined in an acute toxicity test. Results showed significant anti-anxiety effects of the compound in all mice studies.

View Article and Find Full Text PDF

Whilst the world sees the tremendous growth of mobile phone technology, radiofrequency electromagnetic radiation (RF-EMR) induced possible health effects have emerged as a topic of recent day debate. The current study is designed to test the hypothesis that chronic 900MHz radiation exposure would potentially dysregulate the stress response system (HPA axis) in vivo, via, its non-thermal mechanisms, leading to alterations in the microarchitecture of the adrenal gland, vulnerable brain regions such as the hippocampus which may results in altered behaviours in rats. Male albino Wistar rats aged four weeks, weighing 50-60g were subjected to 900MHz radiation from a cellphone for four weeks at a rate of one hour per day.

View Article and Find Full Text PDF

Prokineticin 2 protein is diurnally expressed in PER2-containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also known as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Chemistry to cognition: Therapeutic potential of (m-CF-PhSe) targeting rats' striatum dopamine proteins in amphetamine dependence.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:

Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.

View Article and Find Full Text PDF

Anxiety-related illnesses constitute one of the leading causes of disability across the globe. Consequently, the need for validated preclinical models to uncover the etiology of anxiety phenotypes remains essential. Given the link between social stress experience and the manifestation of anxiogenic-like outcomes, we evaluated whether social defeat stress (SDS) reduces open-space exploratory behavior in prairie voles ().

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!