In conjunction with the investigation of intercellular compartmentation of liver metabolism and as a logical further step, following the introduction of a new sample isolation procedure for microchemical analysis of functional liver cell heterogeneity, the possible benefit of computer-assisted three-dimensional imaging procedures for the reconstruction of hepatic metabolite distribution was investigated. In this intent, we elected to access a central computer facility by means of a small microcomputer system which, nevertheless, permitted to take full advantage of a large capacity main-frame computer and a high quality graphics plotter, at comparatively low overall costs. Commercially available software (SAS/GRAPH) was tailored to the specific requirements of this application. The three-dimensional imaging process recombines microchemical data (metabolite or enzyme values) with those of the size and location of samples within a particular cross-sectional area of a liver unit and provides an integrated view of metabolite distributions. The three-dimensional images were then used to define general distribution characteristics, as well as, differences in metabolite distribution along sinusoids of portal and septal origin. Glucose increased, whereas glucose-6-P decreased along sinusoids from the beginning to the end and values of both metabolites were found to be higher along 'portal/central' than along 'septal/central' sinusoids. Co-distribution of glucose-6-phosphatase with its substrate (glucose-6-P) was indicated by histochemical and microchemical results and is anticipated to be of considerable regulatory importance, since it further enhances the differences among hepatocytes at different locations along sinusoids with respect to their ability to produce glucose.(ABSTRACT TRUNCATED AT 250 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00482969 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!