Background: Large-scale data on the photosynthetic characteristics of whole crop canopy is crucial for improving yield. However, current data collection methods remain challenging, and the time constraints associated with photosynthetic data collection further complicate matters. Developing a practical yet easy-to-use tool for collecting whole-canopy data is essential to address these challenges. Furthermore, it is necessary to obtain instantaneous measurements of photosynthetic rate over a wide range of CO concentrations under an unsteady state to enable faster data collection and obtain reliable biochemical limits of carbon assimilation. This study developed a semi-open chamber system with steady and unsteady state measurement techniques to collect biochemical photosynthetic data from an entire cucumber canopy, emphasizing the correction procedures for CO concentration of unsteady state measurements applicable regardless of chamber scale.

Results: After constructing a semi-open chamber system, we described how to correct measurement errors according to chamber volume. In order to assess the accuracy of the newly developed system, an analysis was conducted to determine the overall measurement error resulting from variations in the reference, sample CO concentration, and leakage flow rate. The total measurement error was accurate to no more than 10%. Furthermore, the difference between the photosynthetic rate of the single leaf and that of the whole-canopy was not significant in Rubisco activity-limited carboxylation range. In addition, the Farquhar-von Caemmerer-Berry (FvCB) model parameters and the photosynthetic rate estimation values were compared to evaluate the steady- and unsteady state measurement methods between the cucumber seedlings' single-leaf and whole-canopy. The average root mean square error of the FvCB model in the steady (standard A-C response) and unsteady states (800 to 400 ramp) of the chambers was 1.4 and 2.3, respectively. Results show that the developed system is suitable for measuring the gas exchange rate of the cucumber canopy.

Conclusions: We demonstrate the correction method for measurement errors to enable the gas exchange rate of the whole-canopy even in an unsteady state. The correction method of the measurement system of the gas exchange rate for the whole- canopy can be applied regardless of the volume of the chamber, and it can be applied simply to other chamber systems. In addition, an unsteady state measurement method for fast data collection was also applicable. However, it was deemed necessary to identify a more optimal measurement range by conducting measurements across a broader range of values.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10408191PMC
http://dx.doi.org/10.1186/s13007-023-01059-1DOI Listing

Publication Analysis

Top Keywords

unsteady state
24
gas exchange
16
data collection
16
semi-open chamber
12
chamber system
12
photosynthetic rate
12
state measurement
12
exchange rate
12
measurement
10
system gas
8

Similar Publications

This study investigates a comprehensive enhancement strategy for photovoltaic (PV) panel efficiency, focusing on increasing electrical output through the integration of parabolic reflectors, advanced cooling mechanisms, and thermoelectric generation. Parabolic reflectors are implemented in the system to maximize solar irradiance on the PV panel's surface, while a specialized cooling system is introduced to regulate temperature distribution across the silicon layer. This cooling system consists of a finned duct filled with paraffin (RT35HC) and enhanced with SWCNT nanoparticles, which improve the thermal properties of the paraffin, facilitating more effective heat dissipation.

View Article and Find Full Text PDF

Vocal Instabilities in Untrained Female Singers.

J Voice

January 2025

Department of Communication Sciences and Disorders, Bowling Green State University, Bowling Green, OH.

Objectives: This study aimed to identify voice instabilities across registration shifts produced by untrained female singers and describe them relative to changes in fundamental frequency, airflow, intensity, inferred adduction, and acoustic spectra.

Study Design: Multisignal descriptive study.

Methods: Five untrained female singers sang up to 30 repetitions of octave scales.

View Article and Find Full Text PDF

The main objectives of this work are to validate a 1D-0D unsteady solver with a distributed stenosis model for the patient-specific estimation of resting haemodynamic indices and to assess the sensitivity of instantaneous wave-free ratio (iFR) predictions to uncertainties in input parameters. We considered 52 patients with stable coronary artery disease, for which 81 invasive iFR measurements were available. We validated the performance of our solver compared to 3D steady-state and transient results and invasive measurements.

View Article and Find Full Text PDF

Horizontal well hydraulic fracturing technology has significantly enhanced the productivity of shale reservoirs. However, our understanding of the expansion patterns within the complex fracture network and fluid seepage mechanisms under field conditions remains inadequate. Here, this work develops a dynamic geomechanical (DG) model to simulate the complete sequence of operations in hydraulic fracturing.

View Article and Find Full Text PDF

Study of the N2 vibrational relaxation behaviors via the CO rovibrational thermometry.

J Chem Phys

December 2024

Deep Space Exploration Laboratory/Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, People's Republic of China.

This paper performed a comprehensive study of the thermal nonequilibrium effects of CO/Ar mixtures with various degrees of N2 additions and probed the N2 relaxation behaviors via the CO rovibrational thermometry. The rovibrational temperature time histories of shock-heated CO/N2/Ar mixtures were measured via a laser-absorption technique, and the corresponding vibrational relaxation data were summarized at 1890-3490 K. The measured results were compared with predictions from the Schwartz-Slawsky-Herzfeld (SSH) formula and the state-to-state (StS) approach (treating CO and N2 as pseudo-species).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!