Background: Human norovirus (HuNoV) is a leading cause of disease globally, yet actual incidence is unknown. HuNoV infections are not reportable in the United States, and surveillance is limited to tracking severe illnesses or outbreaks. Wastewater monitoring for HuNoV has been done previously and results indicate it is present in wastewater influent and concentrations are associated with HuNoV infections in the communities contributing to wastewater. However, work has mostly been limited to monthly samples of liquid wastewater at one or a few wastewater treatment plants (WWTPs).

Objective: The objectives of this study are to investigate whether HuNoV GII preferentially adsorbs to wastewater solids, investigate concentrations of HuNoV GII in wastewater solids in wastewater treatment plants across the county, and explore how those relate to clinical measures of disease occurrence. In addition, we aim to develop and apply a mass-balance model that predicts the fraction of individuals shedding HuNoV in their stool based on measured concentrations in wastewater solids.

Methods: We measured HuNoV GII RNA in matched wastewater solids and liquid influent in 7 samples from a WWTP. We also applied the HuNoV GII assay to measure viral RNA in over 6000 wastewater solids samples from 145 WWTPs from across the United States daily to three times per week for up to five months. Measurements were made using digital droplet RT-PCR.

Results: HuNoV GII RNA preferentially adsorbs to wastewater solids where it is present at 1000 times the concentration in influent. Concentrations of HuNoV GII RNA correlate positively with clinical HuNoV positivity rates. Model output of the fraction of individuals shedding HuNoV is variable and uncertain, but consistent with indirect estimates of symptomatic HuNoV infections in the United States.

Impact Statement: Illness caused by HuNoV is not reportable in the United States so there is limited data on disease occurrence. Wastewater monitoring can provide information about the community spread of HuNoV. Data from wastewater can be available within 24 h of sample receipt at a laboratory. Wastewater is agnostic to whether individuals seek medical care, are symptomatic, and the severity of illness. Knowledge gleaned from wastewater may be used by public health professionals to make recommendations on hand washing, surface disinfection, or other behaviors to reduce transmission of HuNoV, or medical doctors to inform clinical decision making.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11222142PMC
http://dx.doi.org/10.1038/s41370-023-00592-4DOI Listing

Publication Analysis

Top Keywords

hunov gii
32
wastewater solids
24
hunov
19
wastewater
18
gii rna
16
united states
16
wastewater treatment
12
treatment plants
12
hunov infections
12
human norovirus
8

Similar Publications

Unlabelled: Human noroviruses (HuNoVs) are the leading cause of acute gastroenteritis worldwide. Currently, there are no targeted antivirals for the treatment of HuNoV infection. Histo-blood group antigens (HBGAs) on the intestinal epithelium are cellular attachment factors for HuNoVs; molecules that block the binding of HuNoVs to HBGAs thus have the potential to be developed as antivirals.

View Article and Find Full Text PDF

H and B Blood Antigens Are Essential for In Vitro Replication of GII.2 Human Norovirus.

Open Forum Infect Dis

January 2025

Department of Microbiology and Immunology, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.

Background: Human norovirus (HuNoV) is a major cause of enteric infectious gastroenteritis and is classified into several genotypes based on its capsid protein amino acid sequence and nucleotide sequence of the polymerase gene. Among these, GII.4 is the major genotype worldwide.

View Article and Find Full Text PDF

The use of human intestinal enteroid cell cultures for detection of multiple gastroenteric viruses.

J Virol Methods

December 2024

Office of Applied Microbiology and Technology, Office of Laboratory Operations and Applied Science, Human Foods Program, Food and Drug Administration, Laurel, MD 20708, USA.

Human norovirus (HuNoV) and human astrovirus (HAstV) are viral enteric pathogens and known causative agents of acute gastroenteritis. Identifying the presence of these viruses in environmental samples such as irrigation water, or foods exposed to virus contaminated water (e.g.

View Article and Find Full Text PDF

Many viral proteins form biomolecular condensates via liquid-liquid phase separation (LLPS) to support viral replication and evade host antiviral responses, and thus, they are potential targets for designing antivirals. In the case of nonenveloped positive-sense RNA viruses, forming such condensates for viral replication is unclear and less understood. Human noroviruses (HuNoVs) are positive-sense RNA viruses that cause epidemic and sporadic gastroenteritis worldwide.

View Article and Find Full Text PDF

Human norovirus disturbs intestinal motility and transit time through its capsid proteins.

PLoS Pathog

November 2024

KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute, Virus-Host Interactions & Therapeutic Approaches (VITA) Research Group, Leuven, Belgium.

Article Synopsis
  • Human norovirus (HuNoV) causes over 700 million cases of gastroenteritis yearly, leading to symptoms like vomiting and diarrhea, but the mechanisms of infection are not well understood due to the absence of suitable animal models.
  • Researchers utilized a zebrafish larvae model to investigate how HuNoV affects intestinal motility and whether a specific viral protein might act as an enterotoxin.
  • The study found that HuNoV GII.4 infection increased intestinal contraction frequency and delayed food transit time in the larvae, indicating potential effects on bowel movements, with viral proteins VP1 and VP2 playing significant roles in these symptoms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!