Histone acetylation regulates most DNA transactions and is dynamically controlled by highly conserved enzymes. The only essential histone acetyltransferase (HAT) in yeast, Esa1, is part of the 1-MDa NuA4 complex, which plays pivotal roles in both transcription and DNA-damage repair. NuA4 has the unique capacity to acetylate histone targets located several nucleosomes away from its recruitment site. Neither the molecular mechanism of this activity nor its physiological importance are known. Here we report the structure of the Pichia pastoris NuA4 complex, with its core resolved at 3.4-Å resolution. Three subunits, Epl1, Eaf1 and Swc4, intertwine to form a stable platform that coordinates all other modules. The HAT module is firmly anchored into the core while retaining the ability to stretch out over a long distance. We provide structural, biochemical and genetic evidence that an unfolded linker region of the Epl1 subunit is critical for this long-range activity. Specifically, shortening the Epl1 linker causes severe growth defects and reduced H4 acetylation levels over broad chromatin regions in fission yeast. Our work lays the foundations for a mechanistic understanding of NuA4's regulatory role and elucidates how its essential long-range activity is attained.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41594-023-01056-xDOI Listing

Publication Analysis

Top Keywords

nua4 complex
8
long-range activity
8
structure nua4-tip60
4
nua4-tip60 complex
4
complex reveals
4
reveals mechanism
4
mechanism long-range
4
long-range chromatin
4
chromatin modification
4
modification histone
4

Similar Publications

Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.

Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.

View Article and Find Full Text PDF

Structure of the human TIP60-C histone exchange and acetyltransferase complex.

Nature

November 2024

Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France.

Article Synopsis
  • Chromatin structure plays a crucial role in regulating DNA processes like transcription, replication, and repair, with the human TIP60-EP400 complex (TIP60-C) being integral to this through its unique activities.
  • Unlike in yeast, where two separate complexes manage histone exchange and acetylation, humans have these functions combined in the TIP60-C, which has a distinctive three-lobed structure made up of parts similar to the yeast complexes.
  • Research shows that the human TIP60-C displays differences in its protein architecture and recruitment to chromatin compared to yeast, suggesting a more flexible, activator-based mechanism for its histone exchange activities.
View Article and Find Full Text PDF
Article Synopsis
  • The NuA4/TIP60 complex plays a crucial role in gene regulation and maintaining genome stability by incorporating histone variant H2A.Z and acetylating histones H4, H2A, and H2A.Z.
  • Cryo-electron microscopy studies reveal that the EP400 subunit acts as a scaffold, organizing the complex and ensuring correct positioning of functional modules, including the actin-related protein module.
  • Loss of the TRRAP subunit disrupts the organization of the NuA4/TIP60 complex, leading to mislocalization and altered acetylation of H2A.Z, highlighting the essential functions of this assembly in cellular processes.
View Article and Find Full Text PDF

Functional characterization of BbEaf6 in : Implications for fungal virulence and stress response.

Virulence

December 2024

State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.

Article Synopsis
  • The Eaf6 protein is important for gene regulation and cell cycle control in various organisms, but its role in entomopathogenic fungi (EPF) was previously unstudied.
  • Research on BbEaf6, the EPF equivalent, shows it's mainly found in the nucleus and its deletion leads to impaired conidiation and altered stress tolerance.
  • The study reveals that BbEaf6 is crucial for development and virulence, affecting the fungus's ability to infect insects and interact with environmental stressors.
View Article and Find Full Text PDF

Understanding the role of BRD8 in human carcinogenesis.

Cancer Sci

September 2024

Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.

The bromodomain is a conserved protein-protein interaction module that functions exclusively to recognize acetylated lysine residues on histones and other proteins. It is noteworthy that bromodomain-containing proteins are involved in transcriptional modulation by recruiting various transcription factors and/or protein complexes such as ATP-dependent chromatin remodelers and acetyltransferases. Bromodomain-containing protein 8 (BRD8), a molecule initially recognized as skeletal muscle abundant protein and thyroid hormone receptor coactivating protein of 120 kDa (TrCP120), was shown to be a subunit of the NuA4/TIP60-histone acetyltransferase complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!