Histone acetylation regulates most DNA transactions and is dynamically controlled by highly conserved enzymes. The only essential histone acetyltransferase (HAT) in yeast, Esa1, is part of the 1-MDa NuA4 complex, which plays pivotal roles in both transcription and DNA-damage repair. NuA4 has the unique capacity to acetylate histone targets located several nucleosomes away from its recruitment site. Neither the molecular mechanism of this activity nor its physiological importance are known. Here we report the structure of the Pichia pastoris NuA4 complex, with its core resolved at 3.4-Å resolution. Three subunits, Epl1, Eaf1 and Swc4, intertwine to form a stable platform that coordinates all other modules. The HAT module is firmly anchored into the core while retaining the ability to stretch out over a long distance. We provide structural, biochemical and genetic evidence that an unfolded linker region of the Epl1 subunit is critical for this long-range activity. Specifically, shortening the Epl1 linker causes severe growth defects and reduced H4 acetylation levels over broad chromatin regions in fission yeast. Our work lays the foundations for a mechanistic understanding of NuA4's regulatory role and elucidates how its essential long-range activity is attained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41594-023-01056-x | DOI Listing |
Biomark Res
January 2025
Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
Background: Although immunotherapy has achieved great progress in advanced triple-negative breast cancer (TNBC), there are still numerous patients who do not benefit from immunotherapy. Therefore, identification of the key molecule that induces immune escape and clarification of its specific mechanism in TNBC are urgently needed.
Methods: In this research, single cell sequencing and bulk sequencing were conducted for biomarker screening.
Nature
November 2024
Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France.
Science
August 2024
California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
Virulence
December 2024
State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
Cancer Sci
September 2024
Division of Clinical Genome Research, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
The bromodomain is a conserved protein-protein interaction module that functions exclusively to recognize acetylated lysine residues on histones and other proteins. It is noteworthy that bromodomain-containing proteins are involved in transcriptional modulation by recruiting various transcription factors and/or protein complexes such as ATP-dependent chromatin remodelers and acetyltransferases. Bromodomain-containing protein 8 (BRD8), a molecule initially recognized as skeletal muscle abundant protein and thyroid hormone receptor coactivating protein of 120 kDa (TrCP120), was shown to be a subunit of the NuA4/TIP60-histone acetyltransferase complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!