Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-β (Aβ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aβ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aβ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aβ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aβ and tau.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10427428PMC
http://dx.doi.org/10.1038/s41591-023-02476-4DOI Listing

Publication Analysis

Top Keywords

cerebrospinal fluid
8
autosomal dominant
8
alzheimer's disease
8
years onset
8
associated aβ
8
aβ tau
8
proteins
6
disease
5
5
fluid proteomics
4

Similar Publications

Cerebrospinal fluid dynamics and subarachnoid space occlusion following traumatic spinal cord injury in the pig: an investigation using magnetic resonance imaging.

Fluids Barriers CNS

January 2025

Adelaide Spinal Research Group & Centre for Orthopaedics and Trauma Research, Faculty of Health and Medical Sciences, The University of Adelaide, Level 7, Adelaide Health and Medical Sciences Building, North Terrace, Adelaide, SA, 5005, Australia.

Background: Traumatic spinal cord injury (SCI) causes spinal cord swelling and occlusion of the subarachnoid space (SAS). SAS occlusion can change pulsatile cerebrospinal fluid (CSF) dynamics, which could have acute clinical management implications. This study aimed to characterise SAS occlusion and investigate CSF dynamics over 14 days post-SCI in the pig.

View Article and Find Full Text PDF

Anything but small: Microarousals stand at the crossroad between noradrenaline signaling and key sleep functions.

Neuron

January 2025

Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA. Electronic address:

Continuous sleep restores the brain and body, whereas fragmented sleep harms cognition and health. Microarousals (MAs), brief (3- to 15-s-long) wake intrusions into sleep, are clinical markers for various sleep disorders. Recent rodent studies show that MAs during healthy non-rapid eye movement (NREM) sleep are driven by infraslow fluctuations of noradrenaline (NA) in coordination with electrophysiological rhythms, vasomotor activity, cerebral blood volume, and glymphatic flow.

View Article and Find Full Text PDF

Rationale: Neuronal intranuclear inclusion disease (NIID) is a slowly progressing neurodegenerative disease with various manifestations and high heterogeneity. Clinical characteristics, imaging, skin biopsy, and genetic testing are necessary for its diagnosis. Electromyography may also be a useful tool for diagnosing NIID.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a hematologic malignancy. It is the most common form of acute leukemia among adults. Recent treatment advances have drastically improved outcomes for these diseases, but the overall survival (OS) is still exceptionally low due to the infiltration of leukemic cells in the central nervous system (CNS).

View Article and Find Full Text PDF

Polyarteritis nodosa with life-threatening intracranial aneurysms in a child, and treatment with infliximab.

Turk J Pediatr

December 2024

Department of Pediatric Rheumatology, Umraniye Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye.

Background: Polyarteritis nodosa (PAN) is a rare and serious form of systemic necrotizing vasculitis that predominantly affects medium and small-sized arteries, with central nervous system involvement being particularly uncommon. Treatment strategies are tailored according to the extent and severity of the disease. While conventional therapy includes glucocorticoids and conventional disease-modifying-rheumatic drugs (cDMARDs), biologic agents may be critical for severe and refractory cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!