A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green synthesize of copper nanoparticles on the cotton fabric as a self-regenerating and high-efficient plasmonic solar evaporator. | LitMetric

Harvesting solar energy, as a clean and abundant resource, in the photothermal process, is the winning point of solar steam generation (SSG) systems. Herein, copper plasmonic nanoparticles were synthesized through a green method via red sanders extraction on the cotton fabric as the reducing matrix. The prepared fabrics were analyzed using FESEM, EDS, XRD, PL, Raman, and contact angle. The treated fabric on the stitched PU foam with cotton yarns with bio-inspired jellyfish structure was used for heat localization and water transmission, simultaneously. The evaporation rate, enhancement, and conversion efficiency of the plasmonic SSG were 1.73 kg m h, 179%, and ~ 98%, under one sun irradiation, respectively. The quality of the collected water was investigated via induced coupled plasma which presents the proper solar desalination (> 99.83% for filtration of Na ion). Regenerating features of the treated fabric along with the simple and cost-effective preparation method promises viable aspects of our system for large-scale applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406925PMC
http://dx.doi.org/10.1038/s41598-023-40060-5DOI Listing

Publication Analysis

Top Keywords

cotton fabric
8
treated fabric
8
green synthesize
4
synthesize copper
4
copper nanoparticles
4
nanoparticles cotton
4
fabric
4
fabric self-regenerating
4
self-regenerating high-efficient
4
high-efficient plasmonic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!