The potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered. The presence of hydroxyl, carboxyl and carbonyl functional groups indicated the significance of the oxygenated functional groups. Spectral analysis of photoluminescence for CQDs confirmed their photoluminescent quality by exhibiting high excitation intensity and possessing greenish-blue fluorescence under UV radiation. The removal percentage of the dyes adsorbed for both CR and MB dyes was 77% and 75%. Langmuir isotherm and pseudo-second-order models closely fitted the adsorption results. Thermodynamics analysis indicated that the adsorption process was exothermic and spontaneous, with excellent reusability and stability. The degradation efficiency of CQDs on both dyes was more than 90% under sunlight irradiation and obeyed the first-order kinetic model. These results demonstrated CQDs to be an excellent adsorbent and outstanding photocatalyst for organic dye degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406919PMC
http://dx.doi.org/10.1038/s41598-023-40069-wDOI Listing

Publication Analysis

Top Keywords

carbon quantum
8
photocatalytic degradation
8
batch adsorption
8
functional groups
8
dyes
6
adsorption
5
cqds
5
synthesis highly
4
highly fluorescent
4
fluorescent carbon
4

Similar Publications

Currently, biopolymer-based Zn-containing nanoforms are of great interest for medical applications. However, there is lack information on optimal synthesis parameters, reagents and stabilizing agent for production of zinc carbonate nanoparticles (ZnC-NPs). In this work, synthesis of ZnC-NPs was carried out by chemical precipitation with the use of chitosan, hydroxyethyl cellulose, methyl cellulose and hyaluronic acid as stabilizing agents.

View Article and Find Full Text PDF

-Armchair graphene nanoribbons (nAGNRs) are promising components for next-generation nanoelectronics due to their controllable band gap, which depends on their width and edge structure. Using non-metal surfaces for fabricating nAGNRs gives access to reliable information on their electronic properties. We investigated the influence of light and iron adatoms on the debromination of 4,4''-dibromo--terphenyl precursors affording poly(-phenylene) (PPP as the narrowest GNR) wires through the Ullmann coupling reaction on a rutile TiO(110) surface, which we studied by scanning tunneling microscopy and X-ray photoemission spectroscopy.

View Article and Find Full Text PDF

Generalized Hartree-Fock (GHF) is a long-established electronic structure method that can lower the energy (compared to spin-restricted variants) by breaking physical wave function symmetries, namely and . After an exposition of GHF theory, we assess the use of GHF trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC-G) calculations of strongly correlated molecular systems including symmetrically stretched hydrogen rings, carbon dioxide, and dioxygen. Imaginary time propagation is able to restore symmetry and yields energies of comparable or better accuracy than CCSD(T) with unrestricted HF and GHF references, and consistently smooth dissociation curves─a remarkable result given the relative scalability of ph-AFQMC-G to larger system sizes.

View Article and Find Full Text PDF

Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.

View Article and Find Full Text PDF

The construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!