Quantum teleportation constitutes a fundamental tool for various applications in quantum communication and computation. However, state-of-the-art continuous-variable quantum teleportation is restricted to moderate fidelities and short-distance configurations. This is due to unavoidable experimental imperfections resulting in thermal decoherence during the teleportation process. Here we present a heralded quantum teleporter able to overcome these limitations through noiseless linear amplification. As a result, we report a high fidelity of 92% for teleporting coherent states using a modest level of quantum entanglement. Our teleporter in principle allows nearly complete removal of loss induced onto the input states being transmitted through imperfect quantum channels. We further demonstrate the purification of a displaced thermal state, impossible via conventional deterministic amplification or teleportation approaches. The combination of high-fidelity coherent state teleportation alongside the purification of thermalized input states permits the transmission of quantum states over significantly long distances. These results are of both practical and fundamental significance; overcoming long-standing hurdles en route to highly-efficient continuous-variable quantum teleportation, while also shining new light on applying teleportation to purify quantum systems from thermal noise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406873 | PMC |
http://dx.doi.org/10.1038/s41467-023-40438-z | DOI Listing |
ACS Photonics
January 2025
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, United States.
Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Information Science and Technology College, Dalian Maritime University, Dalian 116026, China.
In this paper, by using eleven entangled quantum states as a quantum channel, we propose a cyclic and asymmetric novel protocol for four participants in which both Alice and Bob can transmit two-qubit states, and Charlie can transmit three-qubit states with the assistance of the supervisor David, who provides a guarantee for communication security. This protocol is based on GHZ state measurement (GHZ), single-qubit measurement (SM), and unitary operations (UO) to implement the communication task. The analysis demonstrates that the success probability of the proposed protocol can reach 100%.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China.
Controlled quantum teleportation is an important extension of multipartite quantum teleportation, which plays an indispensable role in building quantum networks. Compared with discrete variable counterparts, continuous variable controlled quantum teleportation can generate entanglement deterministically and exhibit higher superiority of the supervisor's authority. Here, we define a measure to quantify the control power in continuous variable controlled quantum teleportation via Greenberger-Horne-Zeilinger-type entangled coherent state channels.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland.
Philos Trans A Math Phys Eng Sci
December 2024
Institute for Cross-Disciplinary Physics and Complex Systems (IFISC) UIB-CSIC, Campus Universitat Illes Balears, Palma de Mallorca 07122, Spain.
Quantum optical networks are instrumental in addressing the fundamental questions and enable applications ranging from communication to computation and, more recently, machine learning (ML). In particular, photonic artificial neural networks (ANNs) offer the opportunity to exploit the advantages of both classical and quantum optics. Photonic neuro-inspired computation and ML have been successfully demonstrated in classical settings, while quantum optical networks have triggered breakthrough applications such as teleportation, quantum key distribution and quantum computing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!