Bioinspired "cage traps" for closed-loop lead management of perovskite solar cells under real-world contamination assessment.

Nat Commun

Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences, 100190, Beijing, PR China.

Published: August 2023

Despite the remarkable progress made in perovskite solar cells, great concerns regarding potential Pb contamination risk and environmental vulnerability risks associated with perovskite solar cells pose a significant obstacle to their real-world commercialization. In this study, we took inspiration from the ensnaring prey behavior of spiders and chemical components in spider web to strategically implant a multifunctional mesoporous amino-grafted-carbon net into perovskite solar cells, creating a biomimetic cage traps that could effectively mitigate Pb leakage and shield the external invasion under extreme weather conditions. The synergistic Pb capturing mechanism in terms of chemical chelation and physical adsorption is in-depth explored. Additionally, the Pb contamination assessment of end-of-life perovskite solar cells in the real-world ecosystem, including Yellow River water and soil, is proposed. The sustainable closed-loop Pb management process is also successfully established involving four critical steps: Pb precipitation, Pb adsorption, Pb desorption, and Pb recycling. Our findings provide inspiring insights for promoting green and sustainable industrialization of perovskite solar cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10406821PMC
http://dx.doi.org/10.1038/s41467-023-40421-8DOI Listing

Publication Analysis

Top Keywords

perovskite solar
24
solar cells
24
cells real-world
8
contamination assessment
8
perovskite
6
solar
6
cells
6
bioinspired "cage
4
"cage traps"
4
traps" closed-loop
4

Similar Publications

SN2-Reaction-Driven Bonding-Heterointerface Strengthens Buried Adhesion and Orientation for Advanced Perovskite Solar Cells.

Angew Chem Int Ed Engl

January 2025

Shandong University of Science and Technology, Institute of Carbon Neutrality, College of Chemical and Biological Engineering, No 579 Qianwangang Road, Huangdao District, 266590, Qingdao, CHINA.

Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior.

View Article and Find Full Text PDF

In-situ Polymerization Induced Seed-Root Anchoring Structure for Enhancing Stability and Efficiency in Perovskite Solar Modules.

Angew Chem Int Ed Engl

January 2025

Southern University of Science and Technology, Department of Mechanical and Energy Engineering, 1088 Xueyuan Blvd, Nanshan District, 518055, Shenzhen, CHINA.

The escape of organic cations over time from defective perovskite interface leads to non-stoichiometric terminals, significantly affecting the stability of perovskite solar cells (PSCs). How to stabilize the interface composition under environmental stress remains a grand challenge. To address this issue, we utilize thiol-functionalized particles as a "seed" and conduct in situ polymerization of 2,2,3,4,4,4-hexafluorobutyl methacrylate (HFMA) as a "root" at the bottom of the perovskite layer.

View Article and Find Full Text PDF

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

Multifunctional Graphdiyne Enables Efficient Perovskite Solar Cells via Anti-Solvent Additive Engineering.

Nanomicro Lett

January 2025

CAS Key Laboratory of Organic Solids, Institute of Chemistry, Beijing National Laboratory for Molecular Sciences, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.

Finding ways to produce dense and smooth perovskite films with negligible defects is vital for achieving high-efficiency perovskite solar cells (PSCs). Herein, we aim to enhance the quality of the perovskite films through the utilization of a multifunctional additive in the perovskite anti-solvent, a strategy referred to as anti-solvent additive engineering. Specifically, we introduce ortho-substituted-4'-(4,4″-di-tert-butyl-1,1':3',1″-terphenyl)-graphdiyne (o-TB-GDY) as an AAE additive, characterized by its sp/sp-cohybridized and highly π-conjugated structure, into the anti-solvent.

View Article and Find Full Text PDF

Solar-powered electrochemical NH synthesis offers the benefits of sustainability and absence of CO emissions but suffers from a poor solar-to-ammonia yield rate (SAY) due to a low NH selectivity, large bias caused by the sluggish oxygen evolution reaction, and low photocurrent in the corresponding photovoltaics. Herein, a highly efficient photovoltaic-electrocatalytic system enabling high-rate solar-driven NH synthesis was developed. A high-performance Ru-doped Co nanotube catalyst was used to selectively promote the nitrite reduction reaction (NORR), exhibiting a faradaic efficiency of 99.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!