Homozygous deletion of CDKN2A/B is currently considered a molecular signature for grade 4 in IDH-mutant astrocytomas, irrespective of tumor histomorphology. The 2021 WHO Classification of CNS Tumors does not currently include grading recommendations for histologically lower-grade (grade 2-3) IDH-mutant astrocytoma with CDKN2A mutation or other CDKN2A alterations, and little is currently known about the prognostic implications of these alternative CDKN2A inactivating mechanisms. To address this, we evaluated a cohort of institutional and publicly available IDH-mutant astrocytomas, 15 with pathogenic mutations in CDKN2A, 47 with homozygous CDKN2A deletion, and 401 with retained/wildtype CDKN2A. The IDH-mutant astrocytomas with mutant and deleted CDKN2A had significantly higher overall copy number variation compared to those with retained/wildtype CDKN2A, consistent with more aggressive behavior. Astrocytoma patients with CDKN2A mutation had significantly worse progression-free (p = 0.0025) and overall survival (p < 0.0001) compared to grade-matched patients with wildtype CDKN2A, but statistically equivalent progression-free survival and overall survival outcomes to patients with CDKN2A deletion. No significant survival difference was identified between CDKN2A mutant cases with or without loss of the second allele. These findings suggest that CDKN2A mutation has a detrimental effect on survival in otherwise lower-grade IDH-mutant astrocytomas, similar to homozygous CDKN2A deletion, and should be considered for future grading schemes.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/nlad063DOI Listing

Publication Analysis

Top Keywords

idh-mutant astrocytomas
12
cdkn2a
10
homozygous deletion
8
idh-mutant astrocytoma
8
cdkn2a mutation
8
retained/wildtype cdkn2a
8
idh-mutant
5
cdkn2a mutations
4
mutations equivalent
4
equivalent prognostic
4

Similar Publications

Background: Isocitrate dehydrogenase (IDH) wild-type (IDH) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDH) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB.

View Article and Find Full Text PDF

Introduction: Astrocytoma is the most common glioma, accounting for about 65% of glioblastoma. Its malignant transformation is also one of the important causes of patient mortality, making it the most prevalent and difficult to treat in primary brain tumours. However, little is known about the underlying mechanisms of this transformation.

View Article and Find Full Text PDF

Isocitrate dehydrogenase (IDH)-mutant gliomas, comprising both astrocytomas and oligodendrogliomas, represent a distinct group of tumors that pose an interdisciplinary challenge. Addressing the needs of affected patients requires close collaboration among various disciplines, including neuropathology, neuroradiology, neurosurgery, radiation oncology, neurology, medical oncology, and other relevant specialties when necessary. Interdisciplinary tumor boards are central in determining the ideal diagnostic and therapeutic strategies for these patients.

View Article and Find Full Text PDF
Article Synopsis
  • IDH-mutant gliomas are the most common malignant brain tumors in young adults, causing significant challenges for patients, including cognitive deficits and high mortality due to tumor progression.
  • Current treatments like surgery, radiation, and chemotherapy enhance survival but can have negative impacts on cognitive function and quality of life.
  • The recent FDA approval of vorasidenib, a drug targeting mutant IDH1/2 proteins, represents a promising new approach, with ongoing trials exploring its use alongside other therapies for better patient outcomes.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!