A facile strategy that directly reduces alkynyl-silver precursors and copper salts for the synthesis of bimetallic nanoclusters using the weak reducing agent Ph SiH is demonstrated. Two alkynyl-protected concentric-shell nanoclusters, (Ph P) [Ag Cu (C≡CR) ] and (Ph P) [Ag Cu Cl(C≡CR) ] (Ag Cu and Ag Cu Cl, R=bis(trifluoromethyl)phenyl), were successfully obtained and characterized by single-crystal X-ray diffraction and electro-spray ionization mass spectrometry. For the first time, a hybrid 55-atom two-shell Mackay icosahedron was found in Ag Cu Cl, which is icosahedral M Cl instead of M . The incorporation of a chloride in the metal icosahedron contributes to the stability of the cluster from both electronic and geometric aspects. Alkynyl ligands show various binding-modes including linear "RC≡C-Cu-C≡CR" staple motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202300605 | DOI Listing |
Molecules
January 2025
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
Palladium-doped silver nanoclusters (NCs) have been highlighted for their unique physicochemical properties and potential applications in catalysis, optics, and electronics. Anion-directed synthesis offers a powerful route to control the morphology and properties of these NCs. Herein, we report a novel Pd-doped Ag NC, [Pd(H)Ag(S){SP(OPr)}] (), synthesized through the inclusion of sulfide and hydride anions.
View Article and Find Full Text PDFR Soc Open Sci
January 2025
Department of Experimental Physics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic.
Gold-silver synergism has been well documented in many scientific works dealing with luminescent nanostructures that are exploitable in biomedical and environmental application. Frequently, the ratio of Au : Ag in synthetic mixtures was varied to influence the extent of Au-Ag synergism of the resulting luminescent gold-silver nanoclusters (GSNCs). However, in our approach, a new step, maturing under differing conditions using the same Au : Ag ratio (5 : 1), has been investigated systematically for the very first time.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.
Atomically precise nanoclusters (NCs) are promising building blocks for designing materials and interfaces with unique properties. By incorporating heteroatoms into the core, the electronic and magnetic properties of NCs can be precisely tuned. To accurately predict these properties, density functional theory (DFT) is often employed, making the rigorous benchmarking of DFT results particularly important.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
An essential feature of coinage metal nanoclusters (NCs) is their photoluminescence (PL), which spans a wide range of wavelengths from visible to near-infrared regions (NIR-I/II). A key challenge for synthetic chemists is to develop materials capable of efficient spectral change with maximum efficiency. Herein, we report novel dithiolate-protected bimetallic Pd-Ag NCs of the type [PdAgS{SP(OR)}] (R = Pr, 1Pr and Bu, 1Bu) and [PdAgS{SP(OBu)}] (2Bu).
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Biogas Institute of Ministry of Agriculture and Rural Affairs, No. 13, Section 4, Renmin South Road, Chengdu 610041, PR China; Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, PR China. Electronic address:
The widespread use of antibiotics has led to a severe pollution issue with antibiotic resistance genes (ARGs), which poses a significant threat to both ecological environments and human health. In this study, we developed an iron-based nanocopper bimetallic material (Fe-nCu) for the efficient removal of ARGs. Our results indicate that nCu can attach to the surface of iron, forming aggregated copper nanoclusters resembling wheat ears.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!