Menthol excites dural afferent neurons by inhibiting leak K conductance in rats.

Neurosci Lett

Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea; Brain Science & Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea. Electronic address:

Published: September 2023

Menthol-a natural organic compound-is widely used for relieving various pain conditions including migraine. However, a high dose of menthol reportedly decreases pain thresholds and enhances pain responses. Accordingly, in the present study, we addressed the effect of menthol on the excitability of acutely isolated dural afferent neurons, which were identified with a fluorescent dye, using the whole-cell patch-clamp technique. Under a voltage-clamped condition, menthol altered the holding current levels in a concentration-dependent manner. The menthol-induced current (I) remained unaffected by the addition of selective transient receptor potential melastatin 8 antagonists. Moreover, the reversal potential of I was similar to the equilibrium potential of K. I was accompanied by an increase in input resistance, thereby suggesting that menthol decreases the leak K conductance. Under a current-clamped condition, menthol caused depolarization of the membrane potential and decreased the threshold for the generation of action potential. While the I was substantially inhibited by 10 μM XE-991, a selective K7 blocker, the M-current mediated by K7 was not detected in the nociceptive neurons tested in the present study. Moreover, I decreased under acidic extracellular pH conditions or in the presence of 3 μM A-1899, a selective K2P3.1 and K2P9.1 blocker. The present results suggest that menthol inhibits leak K channels, possibly acid-sensitive two-pore domain K channels, thereby increasing the excitability of nociceptive sensory neurons. The resultant increase in neuron excitability may partially be responsible for the pronociceptive effect mediated by high menthol doses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2023.137427DOI Listing

Publication Analysis

Top Keywords

menthol
8
dural afferent
8
afferent neurons
8
leak conductance
8
condition menthol
8
potential
5
menthol excites
4
excites dural
4
neurons
4
neurons inhibiting
4

Similar Publications

Obesity, recognized as a metabolic disease and a global epidemic, calls for novel pharmacological interventions. Menthol, an organic compound, has shown promise in increasing energy expenditure and has been proposed as a potential anti-obesity drug. While preclinical studies have demonstrated menthol's preventive effect on body mass gain, none have investigated its efficacy in treating obesity.

View Article and Find Full Text PDF

Importance: Cigarette companies have been introducing synthetic cooling agent menthol-mimicking cigarettes into the US marketplace as menthol cigarette bans are implemented. These cigarettes may reduce the public health benefits of menthol cigarette bans.

Objective: To examine the epidemiology of the use of synthetic cooling agent menthol-mimicking cigarettes among adults in the US.

View Article and Find Full Text PDF

This study evaluates the antioxidant, anti-inflammatory and anticancer activities of camphor, menthol and their equimolar combination. In silico toxicity analysis confirmed the absence of toxic effects for both compounds. Antioxidant activity, assessed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assays, revealed a synergistic effect of the equimolar combination with IC50 values of 10.

View Article and Find Full Text PDF

Chicken thigh is a popular and widely consumed meat product. However, its high moisture content and susceptibility to microbial spoilage limit its shelf life. To address this issue, we investigated the efficacy of an edible coating based on alginate nanoparticles (AlgNPs) containing menthol, essential oil (EO), or their combination for extending the shelf life of chicken thigh.

View Article and Find Full Text PDF

Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples.

Foods

December 2024

Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain.

In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4--butylphenol, 4--butylphenol, 4--amylphenol, 4--hexylphenol, 4--octylphenol, 4--heptylphenol, 4--octylphenol, and 4--nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!