The complex between the Rev protein of HIV-1 and the Rev Recognition Element (RRE) within the virus RNA promotes nuclear export of unspliced or incompletely spliced viral transcripts and is required for virus transmission. Here, we have screened a virtual collection of compounds using a pharmacophore based on the chemical similarity of previously characterized inhibitors to identify new chemical scaffolds blocking the RRE-Rev interaction. The best molecules discovered with this strategy inhibited the complex by binding to the RRE and exhibited substantial antiretroviral activity (between 0.582 and 11.3 μM EC values) likely associated to inhibitory actions on viral transcription and Rev function. These results have allowed us to identify structural features required for RRE-Rev inhibition as well as to add new compounds to the pool of possible candidates for developing antiretroviral agents based on blockage of HIV-1 RNA biogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2023.115734 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!