A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impacts of climate change on nutrient and sediment loads from a subtropical catchment. | LitMetric

Climate change is predicted to significantly alter hydrological cycles across the world, affecting runoff, streamflow, and pollutant loads from diffuse sources. The objectives of this study were to examine the impacts of climate change on streamflow, total nitrogen (TN), total phosphorus (TP), and total suspended sediment (TSS) loads in the subtropical Logan-Albert catchment, Queensland, Australia. We calibrated the Soil Water Assessment Tool (SWAT) against event monitoring data in the Logan and Albert rivers, respectively. Hydrological and water quality effects of an ensemble of 11 dynamically downscaled high-resolution climate models were assessed with SWAT under high (Representative Concentration Pathway 8.5 - RCP8.5) and intermediate (RCP4.5) emission scenarios. Streamflow decreased most in winter and spring and decreased least in summer. This followed the predicted seasonal changes for precipitation, although decreases tended to be amplified due to increasing evaporative loss. TSS, TN, and TP loads showed a similar pattern to streamflow, with the largest decreases predicted for the dry season under RCP8.5 by the 2080s. Annual TSS load decreased by 34.3 and 54.2%, TN load decreased by 29.8 and 30.5%, and TP load by 24.9 and 4.4% for the Logan and Albert sites, respectively. The results of this study indicate that for subtropical river-estuary systems, climate warming may lead to lower streamflow and contaminant loads, reduced flushing, and greater relative importance of point source loads in urbanising catchments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118738DOI Listing

Publication Analysis

Top Keywords

climate change
12
impacts climate
8
loads subtropical
8
tss loads
8
logan albert
8
load decreased
8
loads
6
streamflow
5
change nutrient
4
nutrient sediment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!