The environmental impact of carbon dioxide emissions is significant, and research is focused on mitigating these emissions and developing eco-friendly technologies in line with green chemistry principles. Waste-to-energy technologies play a crucial role in converting waste into renewable energy and valuable biofuels and bioproducts. This study specifically explores the utilization of waste gas emissions, particularly carbon dioxide, from various sources in the United States for the production of sustainable aviation fuel (SAF) precursors, such as ethanol and acetic acid. The study categorizes and quantifies the volumes of carbon dioxide emissions into three types: non-biogenic, biogenic, and biogenic emissions from ethanol production facilities. Stoichiometric calculations are applied to compare the amounts of carbon dioxide from each category with the available hydrogen production capacity, determining if sufficient hydrogen is present for converting carbon dioxide into SAF precursors. The study reveals two key findings. Firstly, there is a significant reserve of carbon dioxide, approximately 1648 million metric tons per year (MMTy), combining all three categories, which would require a substantial increase of approximately 35-40 times in the existing hydrogen production capacity of 4.988 MMTy. This increased hydrogen production has the potential to yield approximately 1067.82 MMTy of acetic acid and 189.19 MMTy of ethanol annually. Secondly, upon analyzing the quality and application of the three sources of carbon dioxide with the currently available hydrogen production capacity, it is found that biogenic carbon dioxide from ethanol plants is the most suitable choice for immediate production of SAF precursors. This would theoretically result in an annual production of 1.36 MMTy of ethanol and 1.772 MMTy of acetic acid. The other two sources of carbon dioxide can be considered potential reserves for future utilization when additional hydrogen production facilities are established. The study provides a foundation for assessing the aggregation potential required for acetic acid and ethanol production. By optimizing the use of waste gases as raw materials, the study not only enables the production of SAF precursors but also contributes to the passive reduction of greenhouse gas emissions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.118641 | DOI Listing |
Sci Rep
January 2025
Civil and Environmental Engineering Department, Khalifa University, Abu Dhabi, UAE.
Estimating spatiotemporal maps of greenhouse gases (GHGs) is important for understanding climate change and developing mitigation strategies. However, current methods face challenges, including the coarse resolution of numerical models, and gaps in satellite data, making it essential to improve the spatiotemporal estimation of GHGs. This study aims to develop an advanced technique to produce high-fidelity (1 km) maps of CO and CH over the Arabian Peninsula, a highly vulnerable region to climate change.
View Article and Find Full Text PDFVet Clin North Am Small Anim Pract
January 2025
Auburn University, College of Veterinary Medicine, Department of Clinical Sciences, 1130 Wire Road, Auburn, AL 36849-5517, USA.
Laser usage in veterinary dermatology has increased in popularity over the last several decades. Carbon dioxide (CO) laser is the leading modality in surgical laser for veterinary dermatology because of its unmatched performance with soft tissue, particularly the skin. This laser cuts and coagulates tissue via the photothermal effect of laser energy when interacting with soft tissues with high water content, such as skin.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen 40002, Thailand. Electronic address:
Chlorine (Cl) and chlorine dioxide (ClO) are commonly used to disinfect water but unfavorable interactions with dissolved organic matter (DOM) result in the formation of disinfection byproducts (DBPs). This study investigated the formation of organic DBPs arising from Cl and ClO disinfections under different contact times in two surface waters in Thailand and Suwannee River natural organic matter with/without bromide using unknown screening analysis with Orbitrap mass spectrometry. Many CHOCl-DBPs and CHOBr-DBPs intermediates were rapidly formed during the initial period of contact (5-30 min).
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea. Electronic address:
The CO adsorption capacity of biochar depends on the type of biomass used and its physicochemical properties; various sorption parameters including temperature, CO concentration, and humidity affect the CO adsorption capacity. Biochar derived from defatted black soldier fly larvae (BSFL) biomass was investigated for direct CO capture and exhibited a hydrophilic/mesoporous structure that contained high concentrations of alkali and alkaline metals (>10 wt%), which contribute to CO chemisorption. The CO adsorption efficiency was higher at 25 °C compared with that at 30 °C and 35 °C, probably due to reduced Brownian motion of CO molecules at lower temperatures.
View Article and Find Full Text PDFJ Surg Educ
January 2025
Department of Surgery, Division of General Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin, Milwaukee, Wisconsin. Electronic address:
Objective: As COVID-19 restrictions are eased, there has been a lively debate on whether residency recruitment interviews should be held virtually or in-person. However, environmental impact has rarely been a focus of this debate and only by inference from limited survey data. In this study, we aimed to estimate the carbon emissions generated from air-travel versus in-person interviews in the general surgery residency recruitment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!