Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
J Hazard Mater
College of Resources and Environment, Hunan Agricultural University, 410128 Changsha, China. Electronic address:
Published: October 2023
Stenotrophomonas maltophilia J2, a highly efficient pyridine-degrading bacterium, was isolated from the aerobic tank of a pesticide-contaminated wastewater treatment plant. The strain J2 demonstrated an impressive pyridine degradation rate of 98.34% ± 0.49% within 72 h, at a pyridine concentration of 1100 mg·L, a temperature of 30 °C, a pH of 8.0, and a NaCl concentration of 0.5%. Notably, two new pyridine metabolic intermediates, 1,3-dihydroxyacetone and butyric acid, were discovered, indicating that J2 may degrade pyridine through two distinct metabolic pathways. Furthermore, the immobilized strain J2 was obtained by immobilizing J2 with biochar derived from the stem of Solidago canadensis L. In the pyridine-contaminated wastewater bioremediation experiment, the immobilized strain J2 was able to remove 2000 mg·L pyridine with a 98.66% ± 0.47% degradation rate in 24 h, which was significantly higher than that of the control group (3.17% ± 1.24%), and remained above 90% in subsequent cycles until the 27th cycle. High-throughput sequencing analysis indicated that the J2 +B group had an elevated relative abundance of bacteria and functional genes that could be associated with the degradation of pyridine. The results offer a foundation for the effective use of immobilized strain in the treatment of recalcitrant pyridine-contaminated wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2023.132220 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.