Effects of herbivore on seagrass, epiphyte and sediment carbon sequestration in tropical seagrass bed.

Mar Environ Res

Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China; Sanya National Marine Ecosystem Research Station, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Sanya, 572000, China; Key Laboratory of Tropical Marine Biotechnology of Hainan Province, Sanya Institute of Oceanology, South China Sea Institute of Oceanology, Sanya, 572100, China; Guangdong Provincial Key Laboratory of Marine Biology Applications, Guangzhou, 510301, China. Electronic address:

Published: September 2023

AI Article Synopsis

  • Herbivorous snails significantly influence seagrass ecosystems, but their impact varies with population density.
  • At lower to moderate densities, these snails enhance seagrass growth and sediment organic carbon, while high densities lead to competition and decreased seagrass and epiphyte health.
  • Understanding this density-dependent relationship can inform strategies for conserving seagrass beds and improving carbon sequestration.

Article Abstract

Herbivores strongly affect the ecological structure and functioning in seagrass bed ecosystems, but may exhibit density-dependent effects on primary producers and carbon sequestration. This study examined the effects of herbivorous snail (Cerithidea rhizophorarum) density on snail intraspecific competition and diet, dominant seagrass (Thalassia hemprichii) and epiphyte growth metrics, and sediment organic carbon (SOC). The growth rates of the herbivorous snail under low density (421 ind m) and mid density (842 ind m) were almost two times of those at extremely high density (1684 ind m), indicating strong intraspecific competition at high density. Herbivorous snails markedly reduced the epiphyte biomass on seagrass leaves. Additionally, the seagrass contribution to herbivorous snail as food source under high density was about 1.5 times of that under low density, while the epiphyte contribution under low density was 3 times of that under high density. A moderate density of herbivorous snails enhanced leaf length, carbon, nitrogen, total phenol and flavonoid contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. However, high density of herbivorous snails decreased leaf glucose, fructose, detritus carbon, and total phenols contents of seagrasses, as well as surface SOC content and activities of polyphenol oxidase and β-glucosidase. Therefore, the effects of herbivorous snail on seagrass, epiphyte and SOC were density-dependent, and moderate density of herbivorous snail could be beneficial for seagrasses to increase productivity. This provided theoretical guidance for enhancing carbon sink in seagrass bed and its better conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2023.106122DOI Listing

Publication Analysis

Top Keywords

herbivorous snail
20
high density
20
density herbivorous
16
seagrass bed
12
density
12
low density
12
herbivorous snails
12
seagrass
8
seagrass epiphyte
8
carbon sequestration
8

Similar Publications

Invertebrate herbivores influence seagrass wasting disease dynamics.

Ecology

December 2024

Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.

Although invertebrate herbivores commonly impact terrestrial plant diseases by facilitating transmission of plant pathogens and increasing host susceptibility to infection via wounding, less is known about the role of herbivores in marine plant disease dynamics. Importantly, transmission via herbivores may not be required in the ocean since saline ocean waters support pathogen survival and transmission. Through laboratory experiments with eelgrass (Zostera marina), we showed that isopods (Pentidotea wosnesenskii) and snails (Lacuna spp.

View Article and Find Full Text PDF

Predators regulate communities through top-down control in many ecosystems. Because most studies of top-down control last less than a year and focus on only a subset of the community, they may miss predator effects that manifest at longer timescales or across whole food webs. In southeastern US salt marshes, short-term and small-scale experiments indicate that nektonic predators (e.

View Article and Find Full Text PDF

Plants produce an immense diversity of defensive specialized metabolites. However, despite extensive functional characterization, the relative importance of different defensive compounds is rarely examined in natural settings. Here, we compare the efficacy of three Nicotiana benthamiana defensive compounds, nicotine, acylsugars and a serine protease inhibitor, by growing plants with combinations of knockout mutations in a natural setting, quantifying invertebrate interactions and comparing relative plant performance.

View Article and Find Full Text PDF

The loss of consumers threatens the integrity of ecological systems, but the mechanisms underlying the effects on communities and ecosystems remain difficult to predict. This is, in part, due to the complex roles that consumers play in those systems. Here, we highlight this complexity by quantifying two mechanisms by which molluscan grazers-typically thought of as consumers of their algal resources-facilitate algae on rocky shores.

View Article and Find Full Text PDF

Seeds and seedlings are particularly vulnerable to herbivory. Unlike mature plants, which can wait until herbivory is experienced to induce defense, seeds and seedlings face mortality if they wait. Slug mucus functions as a kairomone, a non-attack-related substance emitted by consumers that is detected by a prey species (in this case, plants).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!